Hierarchical Clustering

I Produces a set of nested clusters organized as a
hierarchical tree
I Can be visualized as a dendrogram

— A tree like diagram that records the sequences of
merges or splits
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Strengths of Hierarchical Clustering

I Do not have to assume any particular number of
clusters

— Any desired number of clusters can be obtained by
‘cutting’ the dendogram at the proper level

I They may correspond to meaningful taxonomies

— Example in biological sciences (e.g., animal kingdom,
phylogeny reconstruction, ...)
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Hierarchical Clustering

[J Two main types of hierarchical clustering
— Agglomerative:

¢ Start with the points as individual clusters

¢ At each step, merge the closest pair of clusters until only one cluster
(or k clusters) left

— Divisive:
¢ Start with one, all-inclusive cluster

¢ At each step, split a cluster until each cluster contains a point (or
there are k clusters)

I Traditional hierarchical algorithms use a similarity or
distance matrix

— Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

1 More popular hierarchical clustering technique

I Basic algorithm is straightforward

Compute the proximity matrix

Let each data point be a cluster

Repeat

Merge the two closest clusters

Update the proximity matrix

Until only a single cluster remains

I Key operation is the computation of the proximity of
two clusters

—  Different approaches to defining the distance between
clusters distinguish the different algorithms
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Starting Situation

[ Start with clusters of individual points and a
proximity matrix

p1 | p2 | p3 | p4|pb5
p1
p2
O p3
O O p4
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O
O
O O O
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Intermediate Situation

[ After some merging steps, we have some clusters
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Intermediate Situation

I We want to merge the two closest clusters (C2 and C5) and
update the proximity matrix.
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After Merging

I The question is “How do we update the proximity matrix?”
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How to Define Inter-Cluster Similarity

Similarity?

I MIN
T MAX
I Group Average

1 Distance Between Centroids

I Other methods driven by an objective

function

— Ward’s Method uses squared error
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How to Define Inter-Cluster Similarity

0 MIN
T MAX
I Group Average

1 Distance Between Centroids

I Other methods driven by an objective
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity

I MIN
I MAX
I Group Average

1 Distance Between Centroids

I Other methods driven by an objective

function
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How to Define Inter-Cluster Similarity

I MIN
T MAX
I Group Average

1 Distance Between Centroids

I Other methods driven by an objective

function

— Ward’s Method uses squared error
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Cluster Similarity: MIN or Single Link

I Similarity of two clusters is based on the two most
similar (closest) points in the different clusters

— Determined by one pair of points, i.e., by one link in
the proximity graph.

11 2 13 14 15 ‘
111 1,00 0,90 0,10 0,65 0,20
12} 0,90 1,00 0,70 0,60 0,50
13] 0,10 0,70 1,00 0,40 0,30

14 0,65 0,60 0,40 1,00 0,80
151 0,20 0,50 0,30 0,80 1,00
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Hierarchical Clustering: MIN

0.2}
0.15}
0.1t
0.05}
0 3 6 2 5 4 1
Nested Clusters Dendrogram

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 62




Strength of MIN

Original Points Two Clusters

* Can handle non-elliptical shapes
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Limitations of MIN
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* Sensitive to noise and outliers

‘-..
.
.,

— Particular case: chain effect
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Cluster Similarity: MAX or Complete Linkage

I Similarity of two clusters is based on the two least
similar (most distant) points in the different
clusters

— Determined by all pairs of points in the two clusters

1 12 13 14 15

11} 1,00 0,90 0,10 0,65 0,20
12} 0,90 1,00 0,70 0,60 0,50
13} 0,10 0,70 1,00 0,40 0,30
14 0,65 0,60 0,40 1,00 0,80

15 0,20 0,50 0,30 0,80 1,00 |74‘ |74‘
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Hierarchical Clustering: MAX

Nested Clusters
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Strength of MAX
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Limitations of MAX
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Cluster Similarity: Group Average

[ Proximity of two clusters is the average of pairwise proximity
between points in the two clusters.

Y xec; proxrimity(X,y)

}'EC'J

prorimity(C;, Cj) =
m; * m;
I Need to use average connectivity for scalability since total
proximity favors large clusters ‘

1 12 13 14 IS5
11 1,00 0,90 0,10 0,65 0,20
12} 0,90 1,00 0,70 0,60 0,50
13l 0,10 0,70 1,00 0,40 0,30

14 0,65 0,60 0,40 1,00 0,80
15| 0,20 0,50 0,30 0,80 1,00

1 2 3 4 S
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Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

[ Compromise between Single and Complete
Link

I Strengths
— Less susceptible to noise and outliers

I Limitations
— Biased towards globular clusters
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Cluster Similarity: Ward’s Method

[ Similarity of two clusters is based on the increase
In squared error when two clusters are merged

— Similar to group average if distance between points is
distance squared

I Less susceptible to noise and outliers
I Biased towards globular clusters

I Hierarchical analogue of K-means
— Can be used to initialize K-means
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Hierarchical Clustering: Comparison

Ward’s Method

Group Average
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Hierarchical Clustering: Time and Space
requirements

I O(N?) space since it uses the proximity matrix.
— N is the number of points.

1 O(N?®) time in many cases
— There are N steps and at each step the proximity
matrix (size: O(N?)) must be updated and searched

— Complexity can be reduced to O(N? log(N) ) time for
some approaches
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Hierarchical Clustering: Problems and
Limitations

1 Once a decision is made to combine two clusters,
It cannot be undone

I No objective function is directly minimized

I Different schemes have problems with one or
more of the following:

— Sensitivity to noise and outliers

— Difficulty handling different sized clusters and convex
shapes

— Breaking large clusters
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Single-link HAC vs Graphs

Cut edges with D>0.12
®1 *1
‘ ®.2 ® 2
| ® 3 ®
D=()3,11,,’ 6 3 e 6
.4 ® 4
0.15} . T

Clusters = connected components
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Single-link HAC vs Graphs

Cut edges with D>0.15 ®q
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Complete-link HAC vs Graphs

Clusters ~ cliques — constraint: earlier cliques have precedence

Cut edges with D>0.15 °1
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MST: Divisive Hierarchical Clustering

1 Build MST (Minimum Spanning Tree)

— Start with a tree that consists of any point

— In successive steps, look for the closest pair of points (p, q) such
that one point (p) is in the current tree but the other (q) is not

— Add q to the tree and put an edge between p and q
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MST: Divisive Hierarchical Clustering

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithim

1: Compute a minimum spanning tree for the proximity graph.

[

. repeat

Create a new cluster by breaking the link corresponding to the largest distance

(smallest similarity).

4: until Only singleton clusters remain

-15
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