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‘What is Cluster Analysis?

® Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups




Applications of Cluster Analysis
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¢ Summarization

= Reduce the size of large
data sets
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What is not Cluster Analysis?

@ Supervised classification

s Have class label information

@ Simple segmentation

= Dividing students into different registration groups
alphabetically, by last name

@ Results of a query

= Groupings are a result of an external specification

@ Graph partitioning
= Some mutual relevance and synergy, but areas are not
identical




Notion of a Cluster can be
Ambiguous
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Similarity and Dissimilarity

@ Similarity
= Numerical measure of how alike two data objects are.
= Is higher when objects are more alike.
= Often falls in the range [0,1]

@ Dissimilarity

= Numerical measure of how different are two data objects
= Lower when objects are more alike

= Minimum dissimilarity is often 0

= Upper limit varies

@ Proximity refers to a similarity or dissimilarity




Euclidean Distance

J@ Euclidean Distance
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n
i 2
dist = .| X(Px —4qx)
k=1
Where nis the number of dimensions (attributes) and p, and

g, are, respectively, the k" attributes (components) or data
objects pand q.

® Standardization is necessary, if scales differ.




Euclidean Distance
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Similarity Between Binary
Vectors

Y

'® Common situation is that objects, pand g,
have only binary attributes

@® Compute similarities using the following

quantities

My, = the number of attributes where p was 0 and q was 1
M,, = the number of attributes where p was 1 and q was 0
My, = the number of attributes where p was 0 and q was 0
M,, = the number of attributes where p was 1 and q was 1

@® Jaccard Coefficient

=| number of 11 matches / number of not-both-zero attributes
values

= (M) / (Mg + My + My,)




Jaccard: Example
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p=1000000000
g=-0000001001
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Types of Clusterings
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‘@A clustering is a set of clusters

@ Important distinction between
hierarchical and partitional sets of
clusters

@ Partitional Clustering

= A division data objects into non-overlapping subsets (clusters)
such that each data object is in exactly one subset

® Hierarchical clustering

= A set of nested clusters organized as a hierarchical tree




Partitional Clustering

eOriginal Points A Partitional Clustering




Hierarchical Clustering
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Types of Clusters

® Well-separated clusters

® Center-based clusters

@ Contiguous clusters
@ Density-based clusters

@ Property or Conceptual




Types of Clusters: Well-Separated

+®Well-Separated Clusters:

= A cluster is a set of points such that any point in a cluster is
closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters




Types of Clusters: Center-Based

@ Center-based

= A cluster is a set of objects such that an object in a cluster is
closer (more similar) to the “center” of a cluster, than to the

center of any other cluster

= The center of a cluster is often a centroid, the average of all
the points in the cluster, or a medoid, the most
“representative” point of a cluster

¢4 center-based clusters




Types of Clusters: Contiguity-Based

@ Contiguous Cluster (Nearest neighbor or
Transitive)

= A cluster is a set of points such that a point in a cluster is
closer (or more similar) to one or more other points in the
cluster than to any point not in the cluster.

.
........

8 contiguous clusters




Types of Clusters: Density-Based

1@ Density-based

= A cluster is a dense region of points, which is separated by
low-density regions, from other regions of high density.

= Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

*6 density-based clusters



Characteristics of the Input Data Are Important

/4R

L

® Type of proximity or density measure
= This is a derived measure, but central to clustering

@ Sparseness
= Dictates type of similarity
= Adds to efficiency

@ Attribute type
= Dictates type of similarity

® Type of Data

= Dictates type of similarity
= Other characteristics, e.g., autocorrelation

@ Dimensionality
@ Noise and Outliers
@ Type of Distribution




Clustering Algorithms

® K-means and its variants

® Hierarchical clustering

® Density-based clustering




K-means Clustering

Number of clusters, K, must be specified
The basic algorithm is very simple

@ Partitional clustering approach
T4 Each cluster is associated with a (center point)
® Each point is assigned to the cluster with the closest
centroid
K4
84

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change




K-means Clustering — Details

@ Initial centroids are often chosen randomly.
~——~=—Clusters produced vary from one run to another.

@ The centroid is (typically) the mean of the points in the
cluster.

‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

®

® K-means will converge for common similarity measures
mentioned above.

&

Most of the convergence happens in the first few
iterations.

o Often the stopping condition is changed to ‘Until relatively few
points change clusters’

® ComplexityisO(n*K*I*d)

. n = number of points, K = number of clusters,
I = number of iterations, d = number of attributes




Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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10 Clusters Example

lteration 4
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eStarting with two initial centroids in one cluster of each pair of clusters




10 Clusters Example
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10 Clusters Example

lteration 4
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|
0 5 10 15 20
X

eStarting with some pairs of clusters having three initial centroids, while
other have only one.




10 Clusters Example

_6

Iteration 1

0 5 1‘0 15 20
Iteration 3

Iteration 2

5 1‘0 15 20
Iteration 4

5 10 15 20

eStarting with some pairs of clusters having three initial centroids, while
other have only one.




Limitations of K-means

#® K-means has problems when clusters
are of differing

m Sizes
= Densities
= Non-globular shapes

@ K-means has problems when the data
contains outliers.




Differing Sizes

Limitations of K-means

eK-means (3 Clusters)

eQriginal Points



Limitations of K-means:
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Limitations of K-means: Non-globular Shapes
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Overcoming K-means Limitations
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eOne solution is to use many clusters.

eFind parts of clusters, but need to put together.



Overcoming K-means Limitations

3 oD 3
e o OQOO
2 o) DO@ & @O .'_. oL
%} Q?g [ o C@D
o o
1 ; B oo o Ol ©
06®"0 ° o o w o @
>0 o0 o O ool © o ©0°
5 e @ o g) r
@O%Cg’)o O 80 & °
1 o R s
o 5 1 o
OQ{:}O o o ] 5 o
b o B o8& o o L © c
o [} OOD [}
o
3 3
2 ! 0 ! i( 3 4 ° 6 2 0 1 2 3 4 5

eQOriginal Points

K-means Clusters




Overcoming K-means Limitations
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Hierarchical Clustering

~ ®Produces a set of nested clusters
organized as a hierarchical tree

# Can be visualized as a dendrogram

= A tree like diagram that records the
sequences of merges or splits
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Strengths of Hierarchical
Clustering

@ Do not have to assume any particular
number of clusters

= Any desired number of clusters can be

obtained by ‘cutting’ the dendogram at the
proper level

#® They may correspond to meaningful
taxonomies

= Example in biological sciences (e.g., animal
kingdom, phylogeny reconstruction, ...)




Hierarchical Clustering
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@ Two main types of hierarchical clustering
= Agglomerative:

+ Start with the points as individual clusters

+ At each step, merge the closest pair of clusters until only one
cluster (or k clusters) left

= Divisive:
+ Start with one, all-inclusive cluster

+ At each step, split a cluster until each cluster contains a point
(or there are k clusters)

@ Traditional hierarchical algorithms use a similarity or
distance matrix
= Merge or split one cluster at a time




Algorithm

<J© More popular hierarchical clustering technique

@ Basic algorithm is straightforward
1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
a, Merge the two closest clusters
5
6

Update the proximity matrix
Until only a single cluster remains

® Key operation is the computation of the proximity of
two clusters

= Different approaches to defining the distance between
clusters distinguish the different algorithms
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Starting Situation

- @®Start with clusters of individual points

and a proximity matrix

opl| ep2| ep3| ep4 ep5 | °
O O p:
O =
O D4
pj
O .
O O O :
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Intermediate Situation

% .
® After some merging steps, we have some clusters
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Intermediate Situation

p
® We want to merge the two closest clusters (C2 and C5)
and update the proximity matrix. oC1| «C2| oc3| oc4] oC5
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How to Define Inter-Cluster Similarity
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e Group Average
e Distance Between Centroids

e Other methods driven by an objective
function
— Ward’s Method uses squared error

eProximity Matrix




How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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o 1] 2] 3] 4[>
1
D
3
D
e MIN .;b

o MAX
e Group Average
e Distance Between Centroids
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eProximity Matrix




/4R

Hierarchical Clustering: Problems and
Limitations

L

@® Once a decision is made to combine two
clusters, it cannot be undone

@ No objective function is directly minimized
® Different schemes have problems with one or
more of the following:

= Sensitivity to noise and outliers

s Difficulty handling different sized clusters and
convex shapes

= Breaking large clusters




DBSCAN

@ DBSCAN is a density-based algorithm.

= Density = number of points within a specified radius (Eps)

= A point is a core point if it has more than a specified number
of points (MinPts) within Eps

» These are points that are at the interior of a
cluster

= A border point has fewer than MinPts within Eps, but is in
the neighborhood of a core point

= A noise point is any point that is not a core point or a border
point.




DBSCAN: Core, Border, and Noise Points
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DBSCAN: Core, Border and Noise Points

ePoint types: core,

eOriginal Points

border and noise

= 4

eEps = 10, MinPts



When DBSCAN Works Well

oClusters

eQOriginal Points

e Resistant to Noise

e Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

eOriginal Points

e Varying densities

e High-dimensional data

* (MinPts=4, Eps=9.92)



Cluster Validity
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@ For supervised classification we have a variety of
measures to evaluate how good our model is

= Accuracy, precision, recall

® For cluster analysis, the analogous question is how to
evaluate the “goodness” of the resulting clusters?

@ But “clusters are in the eye of the beholder”!

@ Then why do we want to evaluate them?
= To avoid finding patterns in noise
= [0 compare clustering algorithms
= To compare two sets of clusters
= [0 compare two clusters
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; Measuring Cluster Validity Via Correlation

% Two matrices
N Proximity Matrix

= “Incidence” Matrix
+  One row and one column for each data point
+ Anentry is 1 if the associated pair of points belong to the same cluster
+ Anentry is 0 if the associated pair of points belongs to different clusters

® Compute the correlation between the two matrices

9 Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

@ High correlation indicates that points that belong to the
same cluster are close to each other.

® Not a good measure for some density or contiguity based
clusters.




Measuring Cluster Validity Via Correlation
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@ Correlation of incidence and proximity matrices for
the K-means clusterings of the following two data

sets.
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Using Similarity Matrix for Cluster Validation

@ Order the similarity matrix with respect to cluster

T labels and inspect visually.
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Using Similarity Matrix for Cluster Validation
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Points

® Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation
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Using Similarity Matrix for Cluster Validation

| @Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation
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