DATA MINING 1
Pattern Mining & Association Rule
Mining

Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 5 “Introduction to Data Mining”, 2nd
Edition by Tan, Steinbach, Karpatne, Kumar

UNIVERSITA DI PISA

Association Rules - Module Outline

 What are association rules (AR) and what are they used for:

* The paradigmatic application: Market Basket Analysis
* The single dimensional AR (intra-attribute)

Market Basket Analysis: The Context

* Analyzing customer purchasing habits by finding associations and
correlations between the different items that customers place in their
“shopping basket”

Milk, eggs, sugar, Milk, eggs, cereal, bread Eggs, sugar
bread

Customerl Customer?2 Customer3

Market Basket Analysis: The Context

* Given: a database of customer transactions, where each transaction is a
set of items.

* Goal: Find groups of items which are frequently purchased together.

_F

]
nu
3
oy
B
%
=

; wansaciion- < 1H1AB,C}>

Goal of MBA

 Extract information on purchasing behavior

* Actionable information: can suggest
* new store layouts
* new product assortments
* which products to put on promotion

* MBA applicable whenever a customer purchases multiple things in proximity
* credit cards
* services of telecommunication companies
* banking services
* medical treatments

MBA: applicable to many other contexts

Telecommunication:

Each customer is a transaction containing the set of customer’s phone calls

Atmospheric phenomena:

Each time interval (e.g. a day) is a transaction containing the set of observed
event (rains, wind, etc.)

Etc.

Association Rules

* Express how product/services relate to each other, and tend to group together
* “if a customer purchases three-way calling, then will also purchase call-waiting”
* simple to understand

* actionable information: bundle three-way calling and call-waiting in a single
package

- Examples.
« Rule form: “Body — Head [support, confidence]”.
 buys(x, “diapers”) — buys(x, “beers”) [0.5%, 60%]
- major(x, “CS”) and takes(x, “DB”) — grade(x, “A”) [1%, 75%]

Body/Head/Antecedent X —> Y Head/Tail/Consequent

Useful, trivial, unexplicable

* Useful: “On Thursdays, grocery store consumers often purchase
diapers and beer together”.

* Trivial: “Customers who purchase maintenance agreements are very
likely to purchase large appliances”.

* Unexplicable: “When a new hardaware store opens, one of the most
sold items is toilet rings.”

Apriori

Association Rule Mining

* Given a set of transactions, find rules that will predict the occurrence of an item
based on the occurrences of other items in the transaction

Market-Basket transactions
Example of Association Rules

TID Items
. {Diaper} — {Beer},
- Bread, Milk {Milk, Bread} — {Eggs,Coke},
2 Bread, Diaper, Beer, Eggs {Beer, Bread} — {Milk},
3 Milk, Diaper, Beer, Coke Implication means co-occurrence,
4 Bread, Milk, Diaper, Beer not causality!
5 Bread, Milk, Diaper, Coke

Find groups of items which are frequently purchased together

Definition: Frequent Itemset

* |temset

]) TiD Items
* A collection of one or more items " —r
* Example: {Milk, Bread, Diaper} 5 Bread, D,l v -
. kitemset r.ea : . iaper, Beer, Eggs
* An itemset that contains k items 5 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
° Su pport count (G) 5 Bread, Milk, Diaper, Coke

* Frequency of occurrence of an itemset
 E.g. o({Milk, Bread,Diaper}) =2

* Support

* Fraction of transactions that contain an itemset
 E.g. s({Milk, Bread, Diaper}) = 2/5

* Frequent Itemset
* An itemset whose support is greater than or equal to a minsup threshold

Definition: Association Rule

e Association Rule

: T) TID Items
— An implication expression of the form :
X —Y, where X and Y are itemsets 1 Bread, Milk
— Example: 2 Bread, Diaper, Beer, Eggs
{M||k, Diaper} — {Beer} 3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
« Rule Evaluation Metrics S Bread, Mk, Diaper, Coke
— Support (s)

+ Fraction of transactions that contain Example:

both X and Y {Milk, Diaper} = {Beer}
— Confidence (c)

+ Measures how often items in Y o (Milk, Diaper,Beer) 2
appear in transactions that = T — g =0.4
contain X | |

o (Milk,Diaper,Beer) 2
=2 P)_2_ 067

o (Milk, Diaper) 3

Association rules - module outline

* How to compute AR
* Basic Apriori Algorithm and its optimizations
* Multi-Dimension AR (inter-attribute)
* Quantitative AR

Association Rule Mining Task

* Given a set of transactions T, the goal of association rule mining is to
find all rules having
* support 2 minsup threshold
» confidence 2 minconf threshold

* Brute-force approach:
* List all possible association rules
* Compute the support and confidence for each rule
* Prune rules that fail the minsup and minconf thresholds
= Computationally prohibitive!

Mining Association Rules

TID Items Example of Rules:

! Bread, Milk {Milk,Diaper} — {Beer} (s=0.4, c=0.67)
2 Bread, Diaper, Beer, Eggs {Milk,Beer} — {Diaper} (s=0.4, c=1.0)
3 Milk, Diaper, Beer, Coke {Diaper,Beer} — {Milk} (s=0.4, c=0.67)
4 Bread, Milk, Diaper, Beer {Beer} — {Milk,Diaper} (s=0.4, c=0.67)
5 Bread, Milk, Diaper, Coke {Diaper} — {Milk,Beer} (s=0.4, c=0.5)

{Milk} — {Diaper,Beer} (s=0.4, c=0.5)

Observations:

e All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

e Rules originating from the same itemset have identical support but
can have different confidence

e Thus, we may decouple the support and confidence requirements

Mining Association Rules

 Two-step approach:

1. Frequent Itemset Generation
— Generate all itemsets whose support 2 minsup

2. Rule Generation

— Generate high confidence rules from each frequent itemset, where each rule is a binary
partitioning of a frequent itemset

* Frequent itemset generation is still computationally expensive

Basic Apriori Algorithm

Problem Decomposition

1. Find the frequent itemsets: the sets of items that satisfy the support
constraint

® A subset of a frequent itemset is also a frequent itemset, i.e., if {A,B}is a
frequent itemset, both {A} and {B} should be a frequent itemset

e Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)

2. Use the frequent itemsets to generate association rules.

Frequent Itemset Generation

Given d items, there
are 29 possible

candidate itemsets

Frequent Itemset Generation

* Brute-force approach:
* Each itemset in the lattice is a candidate frequent itemset

* Count the support of each candidate by scanning the database
Transactions List of

Candidates

TID |Items
Bread, Milk
Bread, Diaper, Beer, Eggs
N Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
¢ Bread, Milk, Diaper, Coke
- W .
* Match each transaction against every candidate

« Complexity ~ O(NMw) => Expensive since M = 29 Il

!

N (B (W (9 [

Frequent Itemset Generation Strategies

* Reduce the number of candidates (M)
« Complete search: M=2¢
* Use pruning techniques to reduce M

* Reduce the number of transactions (N)
* Reduce size of N as the size of itemset increases

e Reduce the number of comparisons (NM)
» Use efficient data structures to store the candidates or transactions
* No need to match every candidate against every transaction

Reducing Number of Candidates

* Apriori principle:
* |If an itemset is frequent, then all of its subsets must also be frequent

 Apriori principle holds due to the following property of the support
measure:

VX,Y (X CY)= s(X) > s(Y)

* Support of an itemset never exceeds the support of its subsets
* This is known as the anti-monotone property of support

supersets

®\
X
@
Pruned “«_

o -
"'l‘\

Found to be
Infrequent

lllustrating Apriori Principle O
/

lllustrating Apriori Principle

TID Items Items (1-itemsets)

1 Bread, Milk

2 Beer, Bread, Diaper, Eggs ltem et
Bread 4

3 Beer, Coke, Diaper, Milk ‘ Coke 2

4 Beer, Bread, Diaper, Milk Milk 4

: : Beer 3

5 Bread, Coke, Diaper, Milk)
Diaper 4
Eggs 1

Minimum Support = 3

IIIustratinﬁ Aﬁriori Principle
Items (1-itemsets)

1 Bread, Milk
2 Beer, Bread, Diaper, Eggs ltem Count
p . Bread 4
3 Beer, Coke, Diaper, Milk ‘
4 Beer, Bread, Diaper, Milk Milk 4
5 Bread, Coke, Diaper, Milk Beer 3
Diaper 4

Minimum Support = 3

TID Items

1 Bread, Milk
° ° ° ° ° 2 Beer, Bread, Diaper, Eggs
IIIUStratlng AE”O“ PrInCIEIe 3 Beer, Coke, Diaper, Milk
ltem Count Items (1-itemsets) 4 Beer, Bread, Diaper, Milk
Bread 4 5 Bread, Coke, Diaper, Milk
&4 ——
Milk 4 ltemset Pairs (2-itemsets)
Beer 3 {Bread,Milk}
Diaper 4 {Bread, Beer } (No need to generate
Eggs 1| NekeaEl I HER) candidates involving Coke
{Beer, Milk} E
{Diaper, Milk} or Eggs)
{Beer,Diaper}

Minimum Support = 3

lllustrating Apriori Principle

ltem Count
Bread 4
Milk 4
Beer 3
Diaper 4

Items (1-itemsets)

4

ltemset Count
{Bread,Milk} 3

{Beer, Bread}

N

{Bread,Diaper} 3
{Diaper,Milk} 3
{Beer,Diaper} 3

Minimum Support = 3

TID

Items

Bread, Milk

Beer, Bread, Diaper, Eggs

Beer, Coke, Diaper, Milk

Beer, Bread, Diaper, Milk

N| & W N -

Bread, Coke, Diaper, Milk

Pairs (2-itemsets)

(No need to generate
candidates involving Coke

or Eggs)

TID Items

1 Bread, Milk
° ° ° ° ° 2 Beer, Bread, Diaper, Eggs
IIIUStratlng AE”O“ PrInCIEIe 3 Beer, Coke, Diaper, Milk
ltem Count Items (1-itemsets) i Beer, Bread, Diaper, Milk
Bread 4 5 Bread, Coke, Diaper, Milk
'} -
Milk 4 ltemset Count | Pairs (2-itemsets)
Beer 3 {Bread,Milk} 3
Diaper = {Beer, Bread} 2 (No need to generate
Eggs 1 | {Bread,Diaper} 3 candidates involving Coke
{Beer,Milk} 2 or Eggs)
{Diaper,Milk} 3 99
{Beer,Diaper} 3
Minimum Support = 3 * _ _
Triplets (3-itemsets)
ltemset

- A s (No need to generate

EEATEECHRIETIIRM candidates involving Bread, Beer
Bread,Diaper,Milk or Milk, Beer)

Beer, Bread, Milk

TID Items

1 Bread, Milk
° ° ° ° ° 2 Beer, Bread, Diaper, Eggs
IIIUStratlng AE”O“ PrInCIEIe 3 Beer, Coke, Diaper, Milk
ltem Count Items (1-itemsets) i Beer, Bread, Diaper, Milk
Bread 4 5 Bread, Coke, Diaper, Milk
'} -
Milk 4 ltemset Count | Pairs (2-itemsets)
Beer 3 {Bread, Milk} 3
Diaper = {Beer, Bread} 2 (No need to generate
Eggs 1 | {Bread,Diaper} 3 candidates involving Coke
{Beer,Milk} 2 or Eggs)
{Diaper,Milk} 3 99
{Beer,Diaper} 3
Minimum Support = 3 * _ _
Triplets (3-itemsets)
ltemset Count

{ Beer, Diaper, Milk} 2
Beer,Bread, Diaper

2
Bread, Diaper, Milk} § 2 |
{Beer, Bread, Milk} 1

TID Items

1 Bread, Milk
° ° ° ° ° 2 Beer, Bread, Diaper, Eggs
IIIUStratlng AE”O“ PrInCIEIe 3 Beer, Coke, Diaper, Milk
ltem Count Items (1-itemsets) i Beer, Bread, Diaper, Milk
Bread 4 5 Bread, Coke, Diaper, Milk
'} -
Milk 4 ltemset Count | Pairs (2-itemsets)
Beer 3 {Bread, Milk} 3
Diaper = {Beer, Bread} 2 (No need to generate
Eggs 1 {Bread,Diaper} 3 candidates involving Coke
{Beer,Milk} 2 or Eggs)
{Diaper,Milk} 3 99
{Beer,Diaper} 3
Minimum Support = 3 * _ _
Triplets (3-itemsets)
ltemset Count

{ Beer, Diaper, Milk} 2
{ Beer,Bread, Diaper} .

{Bread, Diaper, Milk} | 2 |
{Beer, Bread, Milk} (

Apriori Algorithm

* F :frequent k-itemsets
* L candidate k-itemsets

* Algorithm
e Let k=1
* Generate F, = {frequent 1-itemsets}
* Repeat until F_is empty
* Candidate Generation: Generate L. from Fr

* Candidate Pruning: Prune candldate |temsets in L, containing subsets of length k that
are infrequent

* Support Counting: Count the support of each candidate in L, by scanning the DB

* Candidate Elimination: Eliminate candidates in L ,, that are infrequent, leaving only
those that are frequent =>F

Candidate Generation: F, . x F, , Method

* Merge two frequent (k-1)-itemsets if they have a common element (if k = 2)

* Merge two frequent (k-1)-itemsets if their first (k-2) items are identical (if k > 2)

o F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
* Merge(ABC, ABD) = ABCD
 Merge(ABC, ABE) = ABCE
* Merge(ABD, ABE) = ABDE

* Do not merge(ABD,ACD) because they share only prefix of length 1 instead of
length 2

Candidate Pruning

*LetF, = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent
3-itemsets

L ={ABCD,ABCE,ABDE} is the set of candidate 4-itemsets generated
(flrom previous slide)

* Candidate pruning
* Prune ABCE because ACE and BCE are infrequent
* Prune ABDE because ADE is infrequent

* After candidate pruning: L, = {ABCD}

lllustrating Apriori Principle

ltem Count | Items (1-itemsets)
Bread 4
'y
Milk 4 ltemset Count | Pairs (2-itemsets)
Beer 3 {Bread, Milk}
Diaper 4 {Bread,Beer} (No need to generate
Eggs 1 {Bread,Diaper} candidates involving Coke
or Eggs)
{Milk,Diaper}
{Beer,Diaper}

Minimum Support = 3

3
3
A

Triplets (3-itemsets)

ltemset Count

{Bread, Diaper, Milk} § 2

Use of F, .xF, . method for candidate generation results in
only one 3-itemset. This is eliminated after the support counting
step.

Support Counting of Candidate Itemsets

* Scan the database of transactions to determine the support of each
candidate itemset

* Must match every candidate itemset against every transaction, which
IS an expensive operation

TiD Items

1 Bread, Milk
. { Beer, Diaper, Milk}

2 Beer, Bread, Diaper, Eggs lé Beer,Bread,Dia er

3 Beer, Coke, Diaper, Milk Bread, Diaper, Milk

4 Beer, Bread, Diaper, Milk e, [Breeteh LGy

5 Bread, Coke, Diaper, Milk

Apriori Execution Example (min_sup-2)

Database TDB C litemset/sup.] litemset[sup.
TID [Items Iy | 2 Il {1y 2
1001 3 4 Scan TDB {2} 3 {2} 3
200|235 {3t | 3 {3} 3
400025 5 | : S

{5} 3

itemset| sup itemset| sup itemset
L2 {13} 2 CZ {12} 1 CZ {12}
23} | 2 E:‘l g% f Scan TDB E:I] gi
{25} | 3 231 | 2 {2 3}
{35} | 2 25 | 3 {2 5)
@ {35t | 2 {3 5}

C, itemset| ScanTDB L, itemset| sup
{2 3 5} {235} 2

Rule Generation

* Given a frequent itemset L, find all non-empty subsets f C L such that
f — L —f satisfies the minimum confidence requirement

* If {A,B,C,D} is a frequent itemset, candidate rules:

ABC —D, ABD —C, ACD —B, BCD —A,
A —BCD, B —ACD, C —ABD, D —ABC
AB —-CD, AC—BD, AD—BC, BC—AD,
BD —AC, CD —AB,

o If |L| =k, then there are 2X— 2 candidate association rules (ignoring L
—Jdand 9 — L)

, , o (Milk, Diaper,Beer) 2
Milk, D B = =—=0.67
iMilk, Diaperj = iBeerj €= "Gk Diaper) 3

Rule Generation

*In general, confidence does not have an anti-monotone property
c(ABC —D) can be larger or smaller than c(AB —D)

* But confidence of rules generated from the same itemset has an
anti-monotone property
e E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

c(ABC — D) = ¢(AB — CD) = c(A — BCD)
s(A,B,C,D) / s(A,B,C) s(A,B,C,D)/s(A,B) s(A,B,C,D)/s(A)
s(A,B,C) <=s(A,B) <= s(A)
* Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
* If c(ABC — D) < min_conf it is useless to calculate c(AB — CD)

Rule Generation for Apriori Algorithm

ABCD=>{}
Low -t~

Confiderfce \\\
' \0"4

Lattice of rules |)

N -_—

0

w)

Il

\4

x>

W

.cn

W)

i ‘
\

:

(@)

o) !
@)

“‘

(@]

> A
(W)

v

O |

“"

@)

I

\

o3)

O
‘

w

)

W)

-
Rues @ ~~=-—_ @ mm=-——"

Maximal Frequent Itemset

An itemset is maximal frequent if it is frequent and none of its
immediate supersets is frequent

Maximal
ltemsets

Infrequent
ltemsets ww-—

Closed Itemset

* An itemset X is closed if none of its immediate supersets has the same support as
the itemset X.

* X is not closed if at least one of its immediate supersets has support count as X.

ltemset | Support
{A} 4
TID ltems {B} o ltemset | Support

1 {A,B} {C} 3 {A,B,C) 2
2 {B,C,D} {D} 4 {A,B,D} 3
3 {A,B,C,D} {A,B} 4 {A,C,D} 2
4 | {AB,D} {A,C} 2 {B,C,D} 2
5 {A,B,C,D} {A,D} 3 {A,B,C,D} 2

{B,C} 3

{B,D} 4

{C,D} 3

Maximal vs Closed Itemsets

Frequent
ltemsets

Closed Frequent
ltemsets

Closed
[temsets

Maximal
Frequent
ltemsets

Figure 5.18. Relationships among frequent, closed, closed frequent, and maximal frequent itemsets.

Pattern Evaluation

* Association rule algorithms can produce large number of rules

* Interestingness measures can be used to prune/rank the patterns

* In the original formulation, support & confidence are the only
measures used

ComEuting Interestingness Measure

e Given X — Y or {X,Y}, information needed to compute interestingness can be
obtained from a contingency table

Contingency table

Y Y f.: support of X and Y
X f,, f, | f, f..: support of X and Y
X f, f, f, f,,- support of X and Y
: ‘ N f,,- support of X and Y
+1 +0

\ Used to define various measures

support, confidence, Gini,
entropy, etc.

Drawback of Confidence

Custo | Tea | Coffee
mers
C1 0 1
C2 1 0
C3 1 1
C4 1 0

Coffee | Cof fee
Tea 150 50 200
Tea 650 150 800
800 200 1000

Association Rule: Tea — Coffee

Confidence = P(Coffee|Tea) = 150/200 = 0.75

Confidence > 50%, meaning people who drink tea are more
likely to drink coffee than not drink coffee

So, this rule seems reasonable

Drawback of Confidence

Coffee | Coffee
Tea 150 50 200
Tea 650 150 800
800 200 1000

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 150/200 = 0.75

but P(Coffee) = 0.8, which means knowing that a person drinks
tea reduces the probability that the person drinks coffee!

- Note that P(Coffee | Tea) = 650/800 = 0.8125

Measure for Association Rules

* So, what kind of rules do we really want?
* Confidence(X — Y) should be sufficiently high
* To ensure that people who buy X will more likely buy Y than not buy Y

* Confidence(X — Y) > support(Y)

* Otherwise, rule will be misleading because having item X actually
reduces the chance of having item Y in the same transaction

* |[s there any measure that capture this constraint?
* Answer: Yes. There are many of them.

Statistical Relationship between X and Y

* The criterion
confidence(X — Y) = support(Y)

is equivalent to:
* P(Y[X) = P(Y)
* P(X,Y) = P(X) x P(Y) (Xand Y are independent)

If P(X,Y) > P(X) x P(Y) : X &Y are positively correlated

If P(X,Y) < P(X) x P(Y) : X &Y are negatively correlated

Measures that take into account statistical dependence

~
Lif =0 . .
P(Y) lift is used for rules while
interest is used both for rules
P and itemsets
Interest = (X, 1)
P(X)P(Y) _

PS=P(X,Y)-P(X)P(Y)

o PXLY)=P(X)P(Y)
g e = = PODIPONI= P

Example: Lift/Interest

Coffee | Coffee
Tea | 150 50 200
Tea | 650 | 150 | 800
800 | 200 | 1000

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.8

- Interest = 0.15 / (0.2x0.8) = 0.9375 (< 1, therefore is negatively
associated)

Continuous and Categorical Attributes

How to apply association analysis to non-asymmetric binary

variables?
Gender | --- | Age | Annual | No of hours spent | No of email | Privacy
Income online per week accounts Concern
Female | --- 26 90K 20 4 Yes
Male e 51 135K 10 2 No
Male e 29 80K 10 3 Yes
Female | --- 45 120K 15 3 Yes
Female | --- 31 95K 20 5 Yes
Male o 25 55K 25 5 Yes
Male o 37 100K 10 1 0
Male o 41 65K 8 2 No
Female | --- 26 85K 12 1 No

Example of Association Rule:
{Gender=Male, Age € [21,30)} — {No of hours online = 10}

Handling Categorical Attributes

* Example: Internet Usage Data

Gender Level of State Computer | Online Chat Online Privacy

Education at Home | Auction Online Banking | Concerns
" Female Graduate [llinois Yes Yes I-Z)a.ily Yes Yes
Male College California No No Never No No
Male sraduate Michigan Yes Yes Monthly Yes Yes
Female College Virginia No Yes Never Yes Yes
Female sraduate California Yes No Never No Yes
Male College Minnesota Yes Yes Weekly Yes Yes
Male College Alaska Yes Yes Daily Yes No
Male High School Oregon Yes No Never No No
Female sraduate Texas No No Monthly No No

{Level of Education=Graduate, Online Banking=Yes}
— {Privacy Concerns = Yes}

Handling Categorical Attributes

* Introduce a new “item” for each distinct attribute-value pair

Male | Female Eduecation | Education Education -+« | Privacy | Privacy
= Graduate | = College | = High School = Yes = No
0 1 1 0 0 1 0
1 0 0 1 0 0 1
1 0 1 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 0 0 0 0 0 1
1 0 0 0 1 0 1
0 1 1 0 0 0 1

Handling Categorical Attributes

* Some attributes can have many possible values

* Many of their attribute values have very low support
* Potential solution: Aggregate the low-support attribute values

Virginia

Others

Ohio

New York lllinois
Michigan
FIorida
California
Minnesota
Massachusetts Texas

Oregon

Handling Continuous Attributes

e Different methods:
* Discretization-based
e Statistics-based

* Non-discretization based
* minApriori

* Different kinds of rules can be produced:
* {Age€[21,30), No of hours online€[10,20)} — {Chat Online =Yes}
» {Age€[21,30), Chat Online = Yes} — No of hours online: u=14, 0=4

Discretization-based Methods

Gender Age | Annual | No of hours spent | No of email | Privacy
Income online per week accounts Concern
Female 26 90K 20 4 ‘es
Male 51 135K 10 2 No
Male 29 80K 10 3 Yes
Female 45 120K 15 3 Yes
Female 31 95K 20 5 Yes
Male 25 55K 25 5 ‘es
Male 37 100K 10 1 No
Male 41 65K 8 2 No
Female 26 85K 12 1 No
Male | Female Age Age Age Privacy | Privacy
<13 | €[13,21) | € [21,30) = Yes = No
0 1 0 0 1 1 0
1 0 0 0 0 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
1 0 0 0 1 1 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1
0 1 0 0 1 0 1

Concept Hierarchies

Food
Electronics

Computers Home

Wheat White Skim

Desktop Laptop Ac DVD

Foremost Kemps

Printer Scanner

Multi-level Association Rules

* Why should we incorporate concept hierarchy?

* Rules at lower levels may not have enough support to appear in any
frequent itemsets

* Rules at lower levels of the hierarchy are overly specific

e e.g., skim milk — white bread, 2% milk — wheat bread,
skim milk — wheat bread, etc.
are indicative of association between milk and bread

* Rules at higher level of hierarchy may be too generic

Multi-level Association Rules

* Approach 1: Extend current association rule formulation by augmenting
each transaction with higher level items

Original Transaction: {skim milk, wheat bread}
Augmented Transaction: {skim milk, wheat bread, milk, bread, food}

* |ssues:
* [tems that reside at higher levels have much higher support counts

* if support threshold is low, too many frequent patterns involving items
from the higher levels

* Increased dimensionality of the data

Multi-level Association Rules

* Approach 2:
* Generate frequent patterns at highest level first
* Then, generate frequent patterns at the next highest level, and so on

* |ssues:

* |/O requirements will increase dramatically because we need to perform
more passes over the data

* May miss some potentially interesting cross-level association patterns

Is Apriori Fast Enough?

* The core of the Apriori algorithm:
» Use frequent (k — 1)-itemsets to generate candidate frequent k-itemsets

* Use database scan and pattern matching to collect counts for the candidate
itemsets

* The bottleneck of Apriori: candidate generation

* Huge candidate sets:
« 10* frequent 1-itemset will generate 10’ candidate 2-itemsets

* To discover a frequent pattern of size 100, e.g., {a,,
2100 = 10%% candidates.

* Multiple scans of database:
* Needs (n +1) scans, n is the length of the longest pattern

, 3,400, ONE needs to generate

FP-Growth

Mining Frequent Patterns Without Candidate Generation

* Compress a large database into a compact, Frequent-Pattern tree
(FP-tree) structure

* highly condensed, but complete for frequent pattern mining
* avoid costly database scans

* Develop an efficient, FP-tree-based frequent pattern mining method
* A divide-and-conquer methodology: decompose mining tasks into smaller ones
* Avoid candidate generation: sub-database test only!

How to construct a FP-tree

TID Items bought

100 {facdgimp} min_support = 3
200 {a) b, C,f; l) m, 0}

300 {bf hj o}

400 {b, ¢, k, s, p}

500 {afc el p mn}

Steps: Header Table
1. Scan DB once, find frequent |Item frequency head
1-itemset (single item I Z
(&
pattern) . :
2. Order frequent items in b 3
frequency descending order |m ;
14

3. Scan DB again, construct
FP-tree

How to construct a FP-tree

TID __ Items bought (ordered) frequent items

100 {f; a, C, d) 8> l) m, p} {f; ¢ a, m, P} min__support =3
200 {a) b’ c).f; l) m’ 0} {f; c’ a) b) m}
300 {b,f hj, o} {f, b}
400 {b,¢c ks, p} {c, b, p}
500 {a).f; c) e’ l)p’ m) n} {f;c) a) m)p}
Steps: Header Table
1. Scan DB once, find frequent |Ifem frequency head
1-itemset (single item i Z
(43
pattern) - 3
2. Order frequent items in b 3
frequency descending order |m ;
P

3. Scan DB again, construct
FP-tree

How to construct a FP-tree

TID __ Items bought (ordered) frequent items

100 {f; a, C, d, 8> l) m, p} {f; ¢ a, m, P} min_support =3
200 {a,b,c f L m, o} {f, ¢, a, b, m}
300 {b,f, hj o} {f, b}
400 {b,¢c ks, p} {c, b, p}
500 {a).f; c) e’ l)p) m’ n} {f;c) a) m)p}
{}
Steps: Header Table Pt
1. Scan DB once, find frequent |ltem frequency head _//")f U
1-itemset (single item J Z N
(43 5
pattern) ., 3 | |
2. Order frequent items in b 3 TP a1
frequency descending order |m 3 e | 1 T
p 3 \ \;>m° 1
3. Scan DB again, construct p | - “
FP-tree S

How to construct a FP-tree

TID __ Items bought (ordered) frequent items

100 {f; a, C, d, 8> l) m, p} {f; ¢ a, m, P} min_support =3
200 {a) b, C,f; l) m, 0} {f; ¢ a, b) m}
300 {b,f, hj, o} {f, b}
400 {b, ¢ ks, p} {c, b, p}
500 {a).f; c) e’ l)p) m) n} {f;c) a) m)p}
Steps: Header Table /{}\
1. Scan DB once, find frequent |Item frequency head /’"j 4
1-itemset (single item J 4 il
pattern) € 4 (LA
a 3 ~~q l
2. Order frequent items in b 3 =™ a2
frequency descending order |m ; ™ \)(1 '} '
\ QTR = /
3. Scan DB again, construct & el ml — b'lf,///
FP-tree N g

How to construct a FP-tree

TID __ Items bought (ordered) frequent items

100 {fLa,c,d g i,m,p}
200 {a) b, C,f; l) m, 0}
300 {b,f, hj, o}

400 {b, ¢, k, s, p}

500 {a,f,¢c,el,p,m n}

Steps:

1. Scan DB once, find frequent
1-itemset (single item
pattern)

2. Order frequent items in
frequency descending order

3. Scan DB again, construct
FP-tree

¢, a,m, p} min_support = 3
{f, ¢, a, b, m}
{f, b}
{c, b, p}
{f, c, a, m, p}
{}
Header Table P
Item frequency head //‘?’f-' 3 -~
f 4 ——” ///
£ 4 ~=a=>l ¢: A|-b:13
a 3 g | x
b 3 T ac 2 |
m 3 ‘\\ \)(\ ,l //.
p 3 \ \»m.._'l:\k‘b_-]/ J/
\ | L,»P’//
N p: Mtm:l

How to construct a FP-tree

TID __ Items bought (ordered) frequent items

100 {fa,c,d g i mp}
200 {a) b, C,f; l) m, 0}
300 {b,f, hj, o}

400 {b, ¢, k, s, p}

500 {a)j; ¢ e, l) p, m, n}

Steps:

1. Scan DB once, find frequent
1-itemset (single item
pattern)

2. Order frequent items in
frequency descending order

3. Scan DB again, construct
FP-tree

{f, c,a, m, p}
{f, ¢, a, b, m}
{f, b}

{c, b, p}

{f, ¢, a, m, p}

min_support = 3

Header Table

Item frequency head

f

c
a
b
m
p

wwWwWwWwiANRAN
/
/

How to construct a FP-tree

TID __ Items bought (ordered) frequent items

100 {fa,c,d g i mp}
200 {a) b, C,f; l) m, 0}
300 {b,f, hj, o}

400 {b, ¢, k, s, p}

500 {a)j; ¢ e, l) p, m, n}

Steps:

1. Scan DB once, find frequent
1-itemset (single item
pattern)

2. Order frequent items in
frequency descending order

3. Scan DB again, construct
FP-tree

{f, c,a, m, p}
{f, ¢, a, b, m}
{f, b}

{c, b, p}

{f, ¢, a, m, p}

min_support = 3

Header Table

Item frequency head

f

c
a
b
m
p

wwWwWwWwiANRAN
/
/

{}
2 TN
-4f4| el
—-’/ // I
15>l c:34| b:13| b:1
&]
o3 E p:1
7

M2 bl o

="

S p:2Nm:l

Benefits of the FP-tree Structure

* Completeness:
* never breaks a long pattern of any transaction
* preserves complete information for frequent pattern mining

* Compactness
* reduce irrelevant information—infrequent items are gone

* frequency descending ordering: more frequent items are more
likely to be shared

* never be larger than the original database (if not count node-links
and counts)

Mining Frequent Patterns Using FP-tree

* General idea (divide-and-conquer)
* Recursively grow frequent pattern path using the FP-tree

* Method

* For each item, construct its conditional pattern-base, and then
its conditional FP-tree

* Repeat the process on each newly created conditional FP-tree

* Until the resulting FP-tree is empty, or it contains only one path
(single path will generate all the combinations of its sub-paths,
each of which is a frequent pattern)

Major Steps to Mine FP-tree

Construct conditional pattern base for each item in the FP-tree
Construct conditional FP-tree from each conditional pattern-base

Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

4. If the conditional FP-tree contains a single path, simply enumerate
all the patterns

Properties of FP-tree for Conditional Pattern Base Construction

* Node-link property: For any frequent item a, all the possible frequent
patterns that contain a. can be obtained by foIIowmg a.’'s node-links,
starting from a/'s head in the FP-tree header

* Prefix path property: To calculate the frequent patterns for a node @,
in a path P, only the prefix sub-path of a.in P need to be accumulated
and its frequency count should carry the same count as node a.

Step 1: From FP-tree to Conditional Pattern Base

e Starting at the frequent header table in the FP-tree

* Traverse the FP-tree by following the link of each frequent item

e Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Header Table

o

tem frequency head

T I RO

W wWwWw A N
/
/

{)

Conditional pattern bases
item cond. pattern base

Step 1: From FP-tree to Conditional Pattern Base

e Starting at the frequent header table in the FP-tree

* Traverse the FP-tree by following the link of each frequent item

e Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Header Table

o

tem frequency head

T I RO

W wWwWw A N
/
/

{)

Conditional pattern bases
item cond. pattern base

p feam:2, cb:1

Step 1: From FP-tree to Conditional Pattern Base

e Starting at the frequent header table in the FP-tree

* Traverse the FP-tree by following the link of each frequent item

e Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Header Table

o

tem frequency head

T I RO

W wWwWw A N
/
/

{)

Conditional pattern bases
item cond. pattern base

m fea:2, fcab:1

p feam:2, cb:1

Step 1: From FP-tree to Conditional Pattern Base

e Starting at the frequent header table in the FP-tree

* Traverse the FP-tree by following the link of each frequent item

e Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Header Table

o

tem frequency head

T I RO

W wWwWw A N
/
/

{)

Conditional pattern bases
item cond. pattern base

b fea:l, f:1, c:1
m fea:2, fcab:1

p feam:2, cb:1

Step 1: From FP-tree to Conditional Pattern Base

e Starting at the frequent header table in the FP-tree
* Traverse the FP-tree by following the link of each frequent item

e Accumulate all of transformed prefix paths of that item to form a conditional pattern base

{} Conditional pattern bases

Header Tabl

SRS e F oo item cond. pattern base
Item frequency head | 114 -7 ¢1
f 4 -1 // .3
c 4 —-—1->| ¢:31| b:13| b:1 ¢ Je:
a 3 g 8 b fea:l, f:1, c:1
b 3 _\1\\) a.'3 : p'] 2 b 7
m 3 s\\ N e ,' — m fca. ,fca .
P 3 .\ >m'2\\\‘>b:1’ /// P fcam.'Z, Cb.'I

Step 1: From FP-tree to Conditional Pattern Base

e Starting at the frequent header table in the FP-tree
* Traverse the FP-tree by following the link of each frequent item

e Accumulate all of transformed prefix paths of that item to form a conditional pattern base

{} Conditional pattern bases
Header Tabl
CRTES RERE N item cond. pattern base
Item_frequency head /":'}4 -7 cd ¢ f:3
fo4 .
c 4 ——4->{ c:31| b: 14| b:1 ¢ Je:3
a 3 g 8 b fea:l, f:1, c:1
b 3 —‘1 > a3 : p] f 2 f b:1
E y z m ca:z, fcab:
m 3 ‘\\ \)< \ I' // .)
p 3 \ Wm23tb:1)/ feam:2, cb:1

Step 2: Construct Conditional FP-tree

* For each pattern-base
* Accumulate the count for each item in the base
* Construct the FP-tree for the frequent items of the pattern base

i}\ m-conditional pattern

Header Table - base:
I;em treg4uencv head 4] c:] fea:2, feab:1
c 4 -=1->| e:31| b:17] b: 1 Y
a 3 S : : '
b 3 TRa3| 1 |pi > 39
m 3 \\\‘~> A\[= ; /// |

3 \ ‘m_-Z\tSL/, a3
p _{—,J T ot l

T P2 %Im.'l ‘ a:3

m-conditional FP-tree

Mining Frequent Patterns by Creating Conditional Pattern Bases

Item | Conditional pattern-base | Conditional FP-tree
p {(fcam:2), (cb:1)} {(c:3)}Ip
m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}|m
b {(fca:1), (f:1), (c:1)} Empty
a {(fc:3)} {(f:3, c:3)}|a
c {(f:3)} {(f:3)}Ic
f Empty Empty

Step 3: recursively mine the conditional FP-tree

{|}
() Cond. pattern base of “"am”: (fc:3) Lo
| |
:3
f:3)
| am-conditional FP-tree
€3 {}
| Cond. pattern base of “cm”: (f:3) |
a:3 :
f:3
m-conditional FP-tree
cm-conditional FP-tree
{|}
Cond. pattern base of “cam”: (f:3) £

cam-conditional FP-tree

Single FP-tree Path Generation

* Suppose an FP-tree T has a single path P

* The complete set of frequent pattern of T can be generated by
enumeration of all the combinations of the sub-paths of P

{}

| All frequent patterns
concerning m
f:3
| i,
, > 4
c:3 fm, cm, am,
' fem, fam, cam,
a:3

fecam

m-conditional FP-tree

Find Patterns Having p From P-conditional Database

 Starting at the frequent item header table in the FP-tree
* Traverse the FP-tree by following the link of each frequent item p

* Accumulate all of transformed prefix paths of item p to form p’s
conditional pattern base

Header Table /\
ltem frequency head //,—f.él //_‘}..1 Conditional pattern bases
f 4 L 4 item cond. pattern base
c 4 |3 V| b:1 14 b1 c f3
a 3 .
b 3 ~~ | a fc3
m 3 —‘\\\\‘ a:3 E p/1 b fea:1,f:1,c:1
p 3 R 44\2/\\\1 / // m fca:2, fcab:1
N pm:2 \ b: // p fcam:2, cb:1

FP-Growth

c,a,m,p

¢, a, b m

ShSh |y

¢ b p

| WIN[P

f,c,a, m, p

f,c,a m

c, b

f,c,a, m

+p

f,c,a m

f,c,a b m

f, b

c, b

f,c,a m

+ a

11f, c, a
2\f, c,a b +m
5 f ¢ a Jlf ¢, a
3| f + b
1if, ¢ a 4c £, ¢
2%, ¢, a, b) o
3| f, b 1f,c a 5/f, ¢
4c, b Zf’c’alﬂ
5 f, ¢, a 3 f 1f, ¢
4c of, ¢
5Ff c, a 3 F
4| c
5/f, c

FP-Growth

c,a,m,p

¢, a, b m

ShSh |y

¢ b p

| WIN[P

f,c,a mp

+p

+ b

f, c a

f,c,a b|+ m

f,c a

(2)

N
Sh Sh |y

66 |06

f:1,2,3,5

(6)

0 {}

¢:2 b1 c:3
a2 a3
+ by |+
p m
||# (1) (2)
mo g
. . .
]./2 c:1 1/3]/3 f4
c:3 +e
+ :
b

(3) (4) (5) (6)

11f, ¢, a, m 1 3
4/c, b +PII# 4lc |+ p ||# ’;:3
5/f, c, a, m 5
1f, c a 1/f, ¢, a o
min_sup = 3 2|f, ¢, a, b +m||# 26 a |+ m ||# fm: 3
5f,c a 5/ f,c a cm: 3
2|f, c, a am:3
3| F + b II# b:3 fem: 3
am: 3
1f,c,a, m p 4 c ; iam-3
2|f, c, a, b, m a .
z 2|f, c |+ a ||# ca: 3
4c, b, p 5/F, ¢ fea: 3
5f,c,a, m, p
1| F
2| F c.4
4 fc: 3
5 F

f: 1,2,3,5 II#

Why is FP-Growth Fast?

* FP-Growth is an order of magnitude 100 - :
faster than Apriori 90 | i —+— D1 FP-grow th runtime
* No candidate generation, no 80 1 ‘: e e i s
candidate test Tkt b Data set T25120D10K

e Use compact data structure
* Eliminate repeated dataset scan

Run time(se
o)
o
1

40 - \
\
* Basic operation is counting and 30 - *
FP-tree building 20/ S
13 Ml e SO
0 0.5 1 1.5 2 2.5 3
Support threshold(%)
#Transactions Items Average Transaction Length

250,000 1000 12

References

* Pattern Mining. Chapter 5. Introduction to
Data Mining.

‘iﬁ?‘"_’}“"’’* Steinbach Anu)
~ -m oore J:.A:s,c-m B B

