
DATA MINING 1
Pattern Mining & Association Rule
Mining
Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 5 “Introduction to Data Mining”, 2nd
Edition by Tan, Steinbach, Karpatne, Kumar

Association Rules - Module Outline

• What are association rules (AR) and what are they used for:
• The paradigmatic application: Market Basket Analysis
• The single dimensional AR (intra-attribute)

Market Basket Analysis: The Context

• Analyzing customer purchasing habits by finding associations and
correlations between the different items that customers place in their
“shopping basket”

Customer1 Customer2 Customer3

Milk, eggs, sugar,
bread

Milk, eggs, cereal, bread Eggs, sugar

Market Basket Analysis: The Context

• Given: a database of customer transactions, where each transaction is a

set of items.

• Goal: Find groups of items which are frequently purchased together.

Goal of MBA

• Extract information on purchasing behavior

• Actionable information: can suggest
• new store layouts

• new product assortments

• which products to put on promotion

• MBA applicable whenever a customer purchases multiple things in proximity
• credit cards

• services of telecommunication companies

• banking services

• medical treatments

MBA: applicable to many other contexts

Telecommunication:

Each customer is a transaction containing the set of customer’s phone calls

Atmospheric phenomena:

Each time interval (e.g. a day) is a transaction containing the set of observed
event (rains, wind, etc.)

Etc.

Association Rules

• Express how product/services relate to each other, and tend to group together

• “if a customer purchases three-way calling, then will also purchase call-waiting”
• simple to understand

• actionable information: bundle three-way calling and call-waiting in a single
package

• Examples.
• Rule form: “Body → Ηead [support, confidence]”.

• buys(x, “diapers”) → buys(x, “beers”) [0.5%, 60%]

• major(x, “CS”) and takes(x, “DB”) → grade(x, “A”) [1%, 75%]

X → YBody/Head/Antecedent Head/Tail/Consequent

Useful, trivial, unexplicable

• Useful: “On Thursdays, grocery store consumers often purchase
diapers and beer together”.

• Trivial: “Customers who purchase maintenance agreements are very
likely to purchase large appliances”.

• Unexplicable: “When a new hardaware store opens, one of the most
sold items is toilet rings.”

Apriori

Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence of an item
based on the occurrences of other items in the transaction

Market-Basket transactions
Example of Association Rules

{Diaper} → {Beer},
{Milk, Bread} → {Eggs,Coke},
{Beer, Bread} → {Milk},

Implication means co-occurrence,
not causality!

Find groups of items which are frequently purchased together

Definition: Frequent Itemset

• Itemset
• A collection of one or more items

• Example: {Milk, Bread, Diaper}

• k-itemset
• An itemset that contains k items

• Support count (σ)
• Frequency of occurrence of an itemset

• E.g. σ({Milk, Bread,Diaper}) = 2

• Support
• Fraction of transactions that contain an itemset

• E.g. s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset
• An itemset whose support is greater than or equal to a minsup threshold

Definition: Association Rule

Example:

● Association Rule
– An implication expression of the form

X → Y, where X and Y are itemsets
– Example:

 {Milk, Diaper} → {Beer}

● Rule Evaluation Metrics
– Support (s)

◆ Fraction of transactions that contain
both X and Y

– Confidence (c)
◆ Measures how often items in Y

appear in transactions that
contain X

Association rules - module outline

• How to compute AR
• Basic Apriori Algorithm and its optimizations
• Multi-Dimension AR (inter-attribute)
• Quantitative AR

Association Rule Mining Task

• Given a set of transactions T, the goal of association rule mining is to
find all rules having

• support ≥ minsup threshold
• confidence ≥ minconf threshold

• Brute-force approach:
• List all possible association rules
• Compute the support and confidence for each rule
• Prune rules that fail the minsup and minconf thresholds
⇒ Computationally prohibitive!

Mining Association Rules
Example of Rules:
{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} → {Milk,Beer} (s=0.4, c=0.5)
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

Observations:
● All the above rules are binary partitions of the same itemset:

{Milk, Diaper, Beer}

● Rules originating from the same itemset have identical support but
 can have different confidence

● Thus, we may decouple the support and confidence requirements

Mining Association Rules

• Two-step approach:
1. Frequent Itemset Generation

– Generate all itemsets whose support ≥ minsup

2. Rule Generation
– Generate high confidence rules from each frequent itemset, where each rule is a binary

partitioning of a frequent itemset

• Frequent itemset generation is still computationally expensive

Basic Apriori Algorithm

Problem Decomposition

1. Find the frequent itemsets: the sets of items that satisfy the support

constraint

● A subset of a frequent itemset is also a frequent itemset, i.e., if {A,B} is a

frequent itemset, both {A} and {B} should be a frequent itemset

● Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)

2. Use the frequent itemsets to generate association rules.

Frequent Itemset Generation

Given d items, there
are 2d possible
candidate itemsets

Frequent Itemset Generation

• Brute-force approach:
• Each itemset in the lattice is a candidate frequent itemset
• Count the support of each candidate by scanning the database

• Match each transaction against every candidate
• Complexity ~ O(NMw) => Expensive since M = 2d !!!

Frequent Itemset Generation Strategies

• Reduce the number of candidates (M)
• Complete search: M=2d

• Use pruning techniques to reduce M

• Reduce the number of transactions (N)
• Reduce size of N as the size of itemset increases

• Reduce the number of comparisons (NM)
• Use efficient data structures to store the candidates or transactions
• No need to match every candidate against every transaction

Reducing Number of Candidates

• Apriori principle:
• If an itemset is frequent, then all of its subsets must also be frequent

• Apriori principle holds due to the following property of the support
measure:

• Support of an itemset never exceeds the support of its subsets
• This is known as the anti-monotone property of support

Found to be
Infrequent

Illustrating Apriori Principle

Pruned
supersets

Illustrating Apriori Principle

Minimum Support = 3

Items (1-itemsets)

Illustrating Apriori Principle

Minimum Support = 3

Items (1-itemsets)

Illustrating Apriori Principle
Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

Illustrating Apriori Principle
Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

Illustrating Apriori Principle
Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)

(No need to generate
candidates involving Bread, Beer
or Milk, Beer)

Minimum Support = 3

Illustrating Apriori Principle
Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

Illustrating Apriori Principle
Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

Apriori Algorithm

• F
k
: frequent k-itemsets

• L
k
: candidate k-itemsets

• Algorithm
• Let k=1
• Generate F

1
 = {frequent 1-itemsets}

• Repeat until F
k
 is empty

• Candidate Generation: Generate L
k+1

from F
k

• Candidate Pruning: Prune candidate itemsets in L
k+1

containing subsets of length k that
are infrequent

• Support Counting: Count the support of each candidate in L
k+1

by scanning the DB
• Candidate Elimination: Eliminate candidates in L

k+1
that are infrequent, leaving only

those that are frequent => F
k+1

Candidate Generation: F
k-1

 x F
k-1

 Method

• Merge two frequent (k-1)-itemsets if they have a common element (if k = 2)

• Merge two frequent (k-1)-itemsets if their first (k-2) items are identical (if k > 2)

• F
3
 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
• Merge(ABC, ABD) = ABCD
• Merge(ABC, ABE) = ABCE
• Merge(ABD, ABE) = ABDE

• Do not merge(ABD,ACD) because they share only prefix of length 1 instead of
length 2

Candidate Pruning

• Let F
3
 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent

3-itemsets

• L
4
 = {ABCD,ABCE,ABDE} is the set of candidate 4-itemsets generated

(from previous slide)

• Candidate pruning
• Prune ABCE because ACE and BCE are infrequent
• Prune ABDE because ADE is infrequent

• After candidate pruning: L
4
 = {ABCD}

Illustrating Apriori Principle
Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

Use of Fk-1xFk-1 method for candidate generation results in
 only one 3-itemset. This is eliminated after the support counting

step.

Support Counting of Candidate Itemsets

• Scan the database of transactions to determine the support of each
candidate itemset

• Must match every candidate itemset against every transaction, which
is an expensive operation

Database TDB

Scan TDB
C1 L1

L2 C2 C2
Scan TDB

C3 L3Scan TDB

Apriori Execution Example (min_sup = 2)

Rule Generation

• Given a frequent itemset L, find all non-empty subsets f ⊂ L such that
f → L – f satisfies the minimum confidence requirement

• If {A,B,C,D} is a frequent itemset, candidate rules:
ABC →D, ABD →C, ACD →B, BCD →A,

A →BCD, B →ACD, C →ABD, D →ABC
AB →CD, AC → BD, AD → BC, BC →AD,
BD →AC, CD →AB,

• If |L| = k, then there are 2k – 2 candidate association rules (ignoring L
→ ∅ and ∅ → L)

Rule Generation

• In general, confidence does not have an anti-monotone property
c(ABC →D) can be larger or smaller than c(AB →D)

• But confidence of rules generated from the same itemset has an
anti-monotone property

• E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD)

• Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Lattice of rules

Pruned
Rules

Low
Confidence
Rule

Maximal Frequent Itemset

Border
Infrequent
Itemsets

Maximal
Itemsets

An itemset is maximal frequent if it is frequent and none of its
immediate supersets is frequent

Closed Itemset

• An itemset X is closed if none of its immediate supersets has the same support as
the itemset X.

• X is not closed if at least one of its immediate supersets has support count as X.

Maximal vs Closed Itemsets

Pattern Evaluation

• Association rule algorithms can produce large number of rules

• Interestingness measures can be used to prune/rank the patterns
• In the original formulation, support & confidence are the only measures used

Computing Interestingness Measure

• Given X → Y or {X,Y}, information needed to compute interestingness can be
obtained from a contingency table

Y Y

X f11 f10 f1+

X f01 f00 fo+

f+1 f+0 N

Contingency table

f11: support of X and Y
f10: support of X and Y
f01: support of X and Y
f00: support of X and Y

Used to define various measures

● support, confidence, Gini,
 entropy, etc.

Drawback of Confidence

 Association Rule: Tea → Coffee

Confidence ≅ P(Coffee|Tea) = 150/200 = 0.75

Confidence > 50%, meaning people who drink tea are more
likely to drink coffee than not drink coffee

So rule seems reasonable

Custo
mers

Tea Coffee …

C1 0 1 …
C2 1 0 …
C3 1 1 …
C4 1 0 …
…

Drawback of Confidence

Coffee Coffee
Tea 150 50 200
Tea 650 150 800

800 200 1000

 Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 150/200 = 0.75

but P(Coffee) = 0.8, which means knowing that a person drinks
tea reduces the probability that the person drinks coffee!

⇒ Note that P(Coffee|Tea) = 650/800 = 0.8125

Measure for Association Rules

• So, what kind of rules do we really want?
• Confidence(X → Y) should be sufficiently high

• To ensure that people who buy X will more likely buy Y than not buy Y

• Confidence(X → Y) > support(Y)
• Otherwise, rule will be misleading because having item X actually reduces the chance of

having item Y in the same transaction

• Is there any measure that capture this constraint?
• Answer: Yes. There are many of them.

Statistical Relationship between X and Y

• The criterion
confidence(X → Y) = support(Y)

is equivalent to:
• P(Y|X) = P(Y)
• P(X,Y) = P(X) × P(Y) (X and Y are independent)

If P(X,Y) > P(X) × P(Y) : X & Y are positively correlated

If P(X,Y) < P(X) × P(Y) : X & Y are negatively correlated

Measures that take into account statistical dependence

lift is used for rules while
interest is used for itemsets

Example: Lift/Interest

Coffee Coffee
Tea 150 50 200
Tea 650 150 800

800 200 1000

 Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.8

⇒ Interest = 0.15 / (0.2×0.8) = 0.9375 (< 1, therefore is negatively
associated)

Continuous and Categorical Attributes

Example of Association Rule:

 {Gender=Male, Age ∈ [21,30)} → {No of hours online ≥ 10}

How to apply association analysis to non-asymmetric binary
variables?

Handling Categorical Attributes

• Example: Internet Usage Data

{Level of Education=Graduate, Online Banking=Yes}
→ {Privacy Concerns = Yes}

Handling Categorical Attributes

• Introduce a new “item” for each distinct attribute-value pair

Handling Categorical Attributes

• Some attributes can have many possible values
• Many of their attribute values have very low support

• Potential solution: Aggregate the low-support attribute values

Handling Continuous Attributes

• Different methods:
• Discretization-based
• Statistics-based
• Non-discretization based

• minApriori

• Different kinds of rules can be produced:
• {Age∈[21,30), No of hours online∈[10,20)}

→ {Chat Online =Yes}
• {Age∈[21,30), Chat Online = Yes}

→ No of hours online: μ=14, σ=4

Discretization-based Methods

Concept Hierarchies

Multi-level Association Rules

• Why should we incorporate concept hierarchy?
• Rules at lower levels may not have enough support to appear in any frequent

itemsets

• Rules at lower levels of the hierarchy are overly specific
• e.g., skim milk → white bread, 2% milk → wheat bread,

skim milk → wheat bread, etc.
are indicative of association between milk and bread

• Rules at higher level of hierarchy may be too generic

Multi-level Association Rules

• Approach 1: Extend current association rule formulation by
augmenting each transaction with higher level items

Original Transaction: {skim milk, wheat bread}
Augmented Transaction:

 {skim milk, wheat bread, milk, bread, food}

• Issues:
• Items that reside at higher levels have much higher support counts
• if support threshold is low, too many frequent patterns involving items from

the higher levels
• Increased dimensionality of the data

Multi-level Association Rules

• Approach 2:
• Generate frequent patterns at highest level first
• Then, generate frequent patterns at the next highest level, and so on

• Issues:
• I/O requirements will increase dramatically because we need to perform more

passes over the data
• May miss some potentially interesting cross-level association patterns

Is Apriori Fast Enough?

• The core of the Apriori algorithm:
• Use frequent (k – 1)-itemsets to generate candidate frequent k-itemsets
• Use database scan and pattern matching to collect counts for the candidate

itemsets

• The bottleneck of Apriori: candidate generation
• Huge candidate sets:

• 104 frequent 1-itemset will generate 107 candidate 2-itemsets

• To discover a frequent pattern of size 100, e.g., {a
1
, a

2
, …, a

100
}, one needs to generate

2100 ≈ 1030 candidates.

• Multiple scans of database:
• Needs (n +1) scans, n is the length of the longest pattern

FP-Growth

Mining Frequent Patterns Without Candidate Generation

• Compress a large database into a compact, Frequent-Pattern tree
(FP-tree) structure

• highly condensed, but complete for frequent pattern mining
• avoid costly database scans

• Develop an efficient, FP-tree-based frequent pattern mining method
• A divide-and-conquer methodology: decompose mining tasks into smaller ones
• Avoid candidate generation: sub-database test only!

How to construct a FP-tree

How to construct a FP-tree

How to construct a FP-tree

1

1

1

1

1

How to construct a FP-tree

1

1

2

2

2

How to construct a FP-tree

1

1

2

2

3

How to construct a FP-tree

1

1

2

2

3

How to construct a FP-tree

Benefits of the FP-tree Structure

• Completeness:
• never breaks a long pattern of any transaction
• preserves complete information for frequent pattern mining

• Compactness
• reduce irrelevant information—infrequent items are gone
• frequency descending ordering: more frequent items are more

likely to be shared
• never be larger than the original database (if not count node-links

and counts)

Mining Frequent Patterns Using FP-tree

• General idea (divide-and-conquer)
• Recursively grow frequent pattern path using the FP-tree

• Method
• For each item, construct its conditional pattern-base, and then

its conditional FP-tree
• Repeat the process on each newly created conditional FP-tree
• Until the resulting FP-tree is empty, or it contains only one path

(single path will generate all the combinations of its sub-paths,
each of which is a frequent pattern)

Major Steps to Mine FP-tree

1. Construct conditional pattern base for each item in the FP-tree

2. Construct conditional FP-tree from each conditional pattern-base

3. Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

4. If the conditional FP-tree contains a single path, simply enumerate
all the patterns

Step 1: From FP-tree to Conditional Pattern Base
• Starting at the frequent header table in the FP-tree

• Traverse the FP-tree by following the link of each frequent item

• Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Properties of FP-tree for Conditional Pattern Base Construction

• Node-link property: For any frequent item a
i
, all the possible frequent

patterns that contain a
i
 can be obtained by following a

i
's node-links,

starting from a
i
's head in the FP-tree header

• Prefix path property: To calculate the frequent patterns for a node a
i

in a path P, only the prefix sub-path of a
i
 in P need to be accumulated,

and its frequency count should carry the same count as node a
i
.

Step 2: Construct Conditional FP-tree
• For each pattern-base

• Accumulate the count for each item in the base
• Construct the FP-tree for the frequent items of the pattern base

Mining Frequent Patterns by Creating Conditional Pattern Bases

Step 3: recursively mine the conditional FP-tree

Single FP-tree Path Generation

• Suppose an FP-tree T has a single path P

• The complete set of frequent pattern of T can be generated by
enumeration of all the combinations of the sub-paths of P

Find Patterns Having p From P-conditional Database
• Starting at the frequent item header table in the FP-tree

• Traverse the FP-tree by following the link of each frequent item p

• Accumulate all of transformed prefix paths of item p to form p’s
conditional pattern base

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

+ p

+ m

+ b

+ a

FP-Growth

+ p
+ m

+ b + a

f: 1,2,3,5

(1) (2)

(3) (4)

(5)
(6)

+ c

FP-Growth

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

{}

f:2 c:1

b:1

p:1

c:2

a:2

m:2

{}

f:3

c:3

a:3

b:1

{}

f:2 c:1

c:1

a:1

{}

f:3

c:3

{}

f:3

+
p

+
m

+
b

+
a

+ c

f:4

(1) (2)

(3) (4) (5) (6)

+ p

+ m

+ b

+ a

f: 1,2,3,5

+ p p: 3
cp: 3

+ m
m: 3
fm: 3
cm: 3
am: 3
fcm: 3
fam: 3
cam: 3
fcam: 3

b: 3

f: 4

a: 3
fa: 3
ca: 3
fca: 3

c: 4
fc: 3

+ c

min_sup = 3

Why is FP-Growth Fast?

• FP-Growth is an order of magnitude
faster than Apriori

• No candidate generation, no
candidate test

• Use compact data structure
• Eliminate repeated dataset scan
• Basic operation is counting and

FP-tree building

References

• Pattern Mining. Chapter 5. Introduction to
Data Mining.

