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Linear Regression



Regression

« Given a dataset containing N observations X, Y;i=1, 2, ..., N

* Regression is the task of learning a target function f that maps each
input attribute set X into an output Y.

* The goal is to find the target function that can fit the input data with
minimum error.

* The error function can be expressed as
* Absolute Error = ); |y; — f(x;)|

e Squared Error = Y;(y; — f (x;))?

\

residuals



Linear Regression

* Linear regression is a linear approach to
modeling the relationship between a
dependent variable Y and one or more
independent (explanatory) variables X.

* The case of one explanatory variable is Yy
called simple linear regression. / gt P

* For more than one explanatory variable,
the process is called multiple linear 20 -10 0 20 30 40 s0 o0 X
regression.

* For multiple correlated dependent
variables, the process is called
multivariate linear regression.




What does it mean to predict Y?

We had some data...

Size




What does it mean to predict Y?

Then we fit a line
toit...
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What does it mean to predict Y?

If a new mouse

e * '. has this weight...
Size

3) Use the line to predict size given weight.




What does it mean to predict Y?

Size

3) Use the line to predict size given weight.




What does it mean to predict Y?

...then this is the

size that we .
-1~ predict from the
weight.
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3) Use the line to predict size given weight.




What does it mean to predict Y?

e Look at X = 5. There are many different Y values at X=5.
* When we say predict Y at X =5, we are really asking:
* What is the expected value (average) of Yat X =57

I | I I
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What does it mean to predict Y?

* Formally, the regression function is given by E(Y[X=x). This is the
expected value of Y at X=x.

* The ideal or optimal predictor of Y based on Xis thus
e f(X) = E(Y | X=x)




Fitting a Line Example



Fitting a Line Example




Fitting a Line Example




Fitting a Line Example
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Fitting a Line Example




Measuring Line Error

— ()
(6]
o o
The distance between r'"_"_r_,
the lineand the 1% | | ®

data point = b -y,

-——
-——
-
—
- -
ol



Measuring Line Error
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The distance between

2" data point= b -y, | 0
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So far, the total distance between the data points
and the line is the sum of the two distances.

The distance between
the line and the
2" data point= b -y,
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(b-y,)+(b-y, Now we've add the 3" distance to our total sum,
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(b'y1)+(b'yz)+(b'y3)
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(b _yl)l + (b "yz)z "’(b "Y3)2 + (b 'Y4)2*(b 'y5)2+ (b 'Y5)2* (b ")";)2+ (b 'y3)2+ (b 'Y9)2
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? This is our measure of
how well this line fits the
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b=y + b=y, +(b=y, 2 +(b-y )2 +(b-y) +(b-y)?+(b-y,) 2 +(b-yg) +(b-y)
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ﬁl data.
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This is our measure of
how well this line fits the

It's called the “sum of
squared residuals,
because the residuals are
the differences between
the real data and the line,
and we are summing the
square of these values.



Now let’s see how good the fit is if we rotate the line a little bit.
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The sum of squared
residuals = 18.72

This is better than before.
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Does this fit improve if we rotate a little more?
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Generic Line Equation

The generic line equation
1S:

= y:0°X*b




Generic Line Equation

The generic line equation
IS:

—- ' y=0"x+Db
| [\
The slope the intercept




Generic Line Equation

The generic line equation
IS

. y=a*x+b
The slope the intercept

We want to find the

| optimal values for “a” and
“b” so that we minimize
the sum of squared
residuals.
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Least Square
Sum of squared residuals @ ((@*x, + b) = y,)* +
.

7

This is the value
of the line at x,.

This is the
observed value
at X,




Least Square

Sum of squared residuals = ((a*x, + b) = y,)* + ((a*x, + b) = y,)* +

Since we want the line that will give us the smallest sum of
squares, this method for finding the best values for “a” and
“b" is called “Least Squares”.




Sum of Squares Residuals
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Finding Best Rotation

We take the derivative of this function.
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Finding Best Rotation

We take the derivative of this function.
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Sumof <+ @
squared -
residuals —+ e v

The derivative tells us the slope
of the function at every point.
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Finding Best Rotation

T The slope at this
point IS pretty

- steep!
-
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Finding Best Rotation

The slope at the
i best point (the
| “least squares”) is
2ero.
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Sumof < @
squared \ -
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Finding Best Rotation

The slope at the
T best point (the
“least squares”) is

. 2er0.
-
Sum °(: I Remember, the different
S rotations are just different
residuals - e v

@ values for “a” (the slope) and
“b" (the intercept).

T Fit=((a*x, +b) -y, + ((0*x, + b) - y,)* +

| ! ] l ! |




It works also for multiple params

Sum of -~

squared
residuals

Taking the derivatives of both
the slope and the intercepts tells
us where the optimal values are
for the best fit.

‘ +“ . intercept

—_—

slope



SimEIe Linear Regression

Dependent Independent

Variable Variable
Linear Model: Y = mX + b Y = X+ [
Slope Intercept (bias)

*In general, such a relationship may not hold exactly for the largely
unobserved population

 We call the unobserved deviations from Y the errors.

* The goal is to find estimated values m'and b’ for the parameters m
and b which would provide the "best" fit for the data points.



Least Square Method (LSM)

» A standard approach for doing this is to apBIy the method of least squares
which attempts to find the parameters m, b that minimizes the sum of
squared error.

* SSE=X,(y; — f(x:))* = X;(y; — mx; — b)?
* also known as the residual sum of squares.

* The LSM finds m, b by setting to zero the first partial derivative of the
above function w.r.t. m and b which are therefore calculated as follows:

* m=(nj(xy)-5x3y)/ (n5(x*) - (3x)*)
*b=(3y-mjx)/n

* LSM can be extended to multiple linear regression.

* An alternative to find m, b, typically adopted in case of multivariate
regression is the Gradient Descent method (see next lectures)



m=(nY(xy)-3xyy)/(n¥(x°)-
(>x)?)
b=(y-m)x)/n

LSM - Example

"xll lly“
Hours of Ice Creams
Sunshine Sold
2 4

3 5

5 7

7 10

9 15

Let us find the best m (slope) and b (y-intercept) that suits that data
y=mx+b



LSM - Example

X Y
2 4
3 5
5 7
7 10
9 15

Step 1: Calculate x* and xy

o
4
9

25

49

81

Xy

8
15
35
70

135

m=(nY(xy)-3xyy)/(n¥(x°)-
(>x)?)
b=(y-m)x)/n



LSM - Example

X y
2 4
3 5
5 7
7 10
9 15
Ix: 26 Iy: 41

Step 2: Sum all the columns

25
49

81

>x%: 168

o0

15
35
70

135

ZXy: 263

m=(nY(xy)-3xyy)/(n¥(x°)-
(>x)?)
b=(y-m)x)/n



m=(nY(xy)-3xyy)/(n¥(x°)-
(>x)?)
b=(Qy-m3x)/n

LSM - Example

N Z(xy) — 2xX 2y

X 2 m =
X = = N 3(x2) — (3x)2
2 4 4 8
_ 5x263 —26x41
3 5 9 15 5x 168 — 262
5 7 25 35 _ 1315 - 1066
840 — 676
7 10 49 70
249
9 15 81 135 = 1,5183...
ZXx: 26 Zy: 41 3x%: 168 Ixy: 263

_ 2y — m 2X
L N

41 -1,5183 x 26
- 5

Step 3: Calculate the slope and the intercept with N=5
= 0,3049...



m=(nY(xy)-3xyy)/(n¥(x°)-
(>x)?)
b=(y-m)x)/n

LSM - Example

X Y vy=1,518x + 0,305
2 4 3,34
3 5 4,86
5 7 7,89
7 10 10,93
9 15 13,97

Step 4: test y=1,518x + 0,305

If x = 8 then we expect to sell 12,45 ice creams

error
-0,66
-0,14
0,89
0,93

—1,03

15

10




Least Square Method

* Blue line shows the least
square fit. Lines from red
points to the regression line I
illustrate the residuals. SRR R

20

|

o. %o
\

15
E} .;
L 3

* For any other choice of slope
m or intercept b the SSE |
between that line and the o 2
observed data would be larger '
than the SSE of the blue line. 0 50 100 150 200 250 300
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Examples
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Alternative Fitting Methods

* Linear regressions fitted using gradient descent can benefit from some
regularizations.

* However, they can be fitted in other ways, such as by minimizing a
penalized version of the least squares cost function as in ridge regression
(L2-norm penalty) and lasso (L1-norm penalty).

* Tikhonov regularization, also known as ridge regression, is a method of
regularization of ill-posed problems particularly useful to mitigate the
multicollinearity, which commonly occurs in models with large numbers of
parameters.

* Lasso (least absolute shrinkage and selection operator) performs both
variable selection and regularization in order to enhance the prediction
accuracy and interpretability of the statistical model it produces.

Multicollinearity: is a phenomenon in which one predictor variable in a multiple regression model can be linearly
predicted from the others with a substantial degree of accuracy. In this situation, the coefficient estimates of the
multiple regression may change erratically in response to small changes in the model or the data.



Linear Regression Models Objective Functions

« Simple Bo + f1x —y

* Multiple Bo + 2i(yi — Bixi)?

* Ridge Bo + X, — Bix;)* + AZ,- :31'2 > egularization
* Lasso Bo+ 2:;(yi — Bix;)? + ’12j |:3j|

Ridge: mitigate the problem of multicollinearity

Lasso: variable selection, i.e., minimizes the number of coefficient different from zeros



Evaluating Regression

e Coefficient of determination R’

* is the proportion of the variance in the dependent variable that is predictable
from the independent variable(s)

Z?—l(yi _3’).)2 hat meaisnpredicted ) .
Z; (v 2;)2 Yy = % doayiand 30 (v —9,) =Y €
i=1\F

* Mean Squared/Absolute Error MSE/MAE

* a risk metric corresponding to the expected value of the squared
(quadratic)/absolute error or loss

R2(y? g) =

Nyamples — 1

MSE(,9) = —— 3 (% —9)? MAE(y,g)—

Nsamples

i=0 Tlsamples



Example

* Height (m): 1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83
* Mass (kg): 52.21, 56.12, 54.48, 55.84, 53.20, 58.57, 59.93, 63.29, 63.11, 61.47, 66.28, 69.10, 67.92, 72.19, 74.46

* Intercept: -35.30454824113264 .
 Coefficient: 58.87472632 e
*R%: 0.93 ,
« MSE: 3.40 "o
* MAE: 1.43 55 -

145 150 155 160 165 170 175 180 185
Height



Nonlinear Regression



Linear Regression Recap

* Linear regression is used to fit a
linear model to data where the
dependent variable is continuous. Y = 31X+ [

* Given a set of points (X Y) we
wish to find a linear functlon (or

line in 2 dimensions) that “goes q - R
through” these points. N S (LS8 RS
* In general, the points are not . N 1], /,// .
exactly aligned. o 1 o 0 flem L |
* The objective is to find the line o - *,//'/;// el ™ & *°
that best fits the points. et "

0 50 100 150 200 250 300



k-NN for Regression

4.2
/
Given a set of training records
10.3 4.1 9.2
(memory), and a test record: S5
1. Compute the distances from the 3.4 » -
records in the training to the test. c 4 — 43
Identify the k “nearest” records.
5.9
3. Use target value of nearest >/ - L, 121
neighbors to determine the value 8.7 | C los
of unknown record (e.g., by 07 % 87
averaging the values). 9.7




Decision Trees for Regression

* The same induction and application gome
Yes LOALET No
procedures can be used. / \
3.0,2.0,4.0,3.0 —
* The only differences are: T e MarsSt
* When leaves are not pure, the average S'”g'e’?//orced \
value is returned as prediction Income 3.8
* Different optimization criterion must < soV \> 80K
be used such as
1.2 4.2
* MISE
* MAE
1 Nsampl -1 n Lo — 1
. 9 samples
MSE(y, §) = >, w-9)" MAE@,9) = —— 3 |w-9
Nsamples i—0 Msamples o ’
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