

Building a classifier
over imbalanced data

Sources
https://svds.com/learning-imbalanced-classes/

http://www.cs.pomona.edu/~dkauchak/classes/f13/cs451-f13/

https://svds.com/learning-imbalanced-classes/
http://www.cs.pomona.edu/~dkauchak/classes/f13/cs451-f13/

Imbalanced classes

● Most classification methods assume classes
are reasonably balanced

Imbalanced classes

● In reality it is quite common to have a very
popular class and a rare (yet interesting) one

Imbalanced classes

● Examples:
– About 2% of credit card accounts are defrauded per year1.

(Most fraud detection domains are heavily imbalanced.)

– Medical screening for a condition is usually performed on a
large population of people without the condition, to detect a
small minority with it (e.g., HIV prevalence in the USA is
~0.4%).

– Disk drive failures are approximately ~1% per year.

– The conversion rates of online ads has been estimated to lie
between 10-3 to 10-6.

– Factory production defect rates typically run about 0.1%.

Imbalanced data
la

b
e
le

d
 d

a
ta

99.997%
not-phishing

0.003%
phishing

The phishing problem is what is called
an imbalanced data problem

This occurs where there is a large
discrepancy between the number of
examples with each class label

e.g. for our 1M example dataset only
about 30 would actually represent
phishing e-mails

What is probably going on with our classifier?

Imbalanced data

always
predict

not-
phishing

99.997% accuracy

Why does the classifier learn this?

Imbalanced data: current
classifiers

la
b
e
le

d
 d

a
ta

99.997%
not-phishing

0.003%
phishing

How will our current classifiers do on this problem?

Imbalanced data: current
classifiers

All will do fine if the data can be easily
separated/distinguished

Decision trees:
 explicitly minimizes training error
 when pruning pick “majority” label at leaves
 tend to do very poor at imbalanced problems

k-NN:
 even for small k, majority class will tend to overwhelm the vote

perceptron:
 can be reasonable since only updates when a mistake is made
 can take a long time to learn

Handling imbalanced data

● Possible alternatives
– Do nothing and hope to be lucky
– Balance the training set in some way:

● Oversample the minority class
● Undersample the majority class

Synthesize new minority classes

– Throw away minority examples and switch to an anomaly
detection framework

– At the algorithm level:
● Adjust the class weight (misclassification costs)
● Adjust the decision threshold
● Modify an existing algorithm to be more sensitive to rare classes

– Construct an entirely new algorithm to perform well on
imbalanced data

Balancing the dataset

● Oversampling the minority class

Balancing the dataset

● Undersampling the majority class

Balancing the dataset

● Undersampling the majority class
● Bayesian argument (Wallace et al., ICDM 2011)

Separation line for 1-d,
balanced data

Separation line for
imbalanced data

Balancing the dataset

● Undersampling the majority class
● Bayesian argument (Wallace et al., ICDM 2011)

Separation lines with
Undersampling (10 examples)

Can apply a bagging
approach

Balancing the dataset

● Smart undersampling
– Remove some majority class points

– Neighbor-based approaches, e.g. Tomek links
● Remove majority points having as NN a minority point

Balancing the dataset

● Smart oversampling
– Add some minority class points

– E.g. SMOTE (Synthetic Minority Oversampling Technique)
● Add points through interporlation

Select only minority
class points

For each point
get k-NNs

Compute
mid-points

Add mid-points
to dataset

Adjusting class weights

● Example from Python scikit-learn
– Some classifiers have a “class_weight” parameter

Related topic: evaluating classifiers
on imbalanced data

● When classes are slightly imbalanced, no balancing is need
● Yet, take that into consideration when evaluating

performances
● E.g.: Assume the test set contains 100 records

 Positive cases = 75, Negative cases = 25
● Is a classifier with 70% accuracy good?
● No, the trivial classifier (always positive) reaches 75%

 Positive cases = 50, Negative cases = 50
● Is a classifier with 70% accuracy good?
● At least much better than the trivial classifier

● Take-home message
– accuracy scores should be compared against some baseline

classifier, e.g. Majority class classifier or a simple-yet-not-trivial one

Similar situation:
multiclass problems

● Assume N classes
● If classes are perfectly balanced, a trivial

classifier (e.g. majority) will yield Atrivial ~100/N %
accuracy
– N=2 → Atrivial ~ 50%

– N=4 → Atrivial ~ 25%

● Goodness of accuracy of a model should be
compared against Atrivial

– If N=5, an accuracy of 40% would look large

Again on evaluation:
scoring/ranking vs. classifying

● Two slightly different objectives
– Classifying = assigning a record to a class

– Scoring/ranking = assigning probabilities of belonging
to a class

● Several classification methods compute scores, and
then assign class
– Score p > 50% → class = Y

– Otherwise → class = N

● E.g.: decision trees have p = #positive/#negative
cases over each leaf

Again on evaluation:
scoring/ranking vs. classifying

● What if we generalize the schema into:
– Score p > X% → class = Y

– Otherwise → class = N

● For each X (in [0-100]) we get a different set of
predictions

– The confusion matrix changes

– All indicators derived from it change
● Accuracy
● TPR
● TNR
● ...

Again on evaluation:
scoring/ranking vs. classifying

● Deeper insights on our model can be obtained looking
at how performances change with X

– ROC curve: plots TPR vs. FPR

Again on evaluation:
scoring/ranking vs. classifying

● Deeper insights on our model can be obtained looking
at how performances change with X

– Precision vs. recall

Again on evaluation:
scoring/ranking vs. classifying

● Deeper insights on our model can be obtained looking
at how performances change with X

– Lift chart: % of positive cases vs. % of dataset
classified as Y

Notice: “Lift chart” is a rather general term, often used to
identify also other kinds of plots. Don’t get confused!

Again on evaluation:
Application example

● From Lift chart we can easily derive an “economical
value” plot, e.g. in target marketing

– Question: Given our predictive model, how many
customers should we target to maximize income?

● Simple economical model

– Profit = UnitB*MaxR*Lift(X) - UnitCost*N*X/100
● UnitB = unit benefit, UnitCost = unit postal cost
● N = total customers, MaxR = expected potential

respondents in all population (N)
● Lift(X) = lift chart value for X, in [0,..,1]

Again on evaluation:
Application example

● From Lift chart we can easily derive an “economical
value” plot, e.g. in target marketing

– Question: Given our predictive model, how many
customers should we target to maximize income?

UnitB = 6€ N=30000
MaxR = 10500 UnitCost = 2.30€

Optimal X = 40%

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Imbalanced data
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

