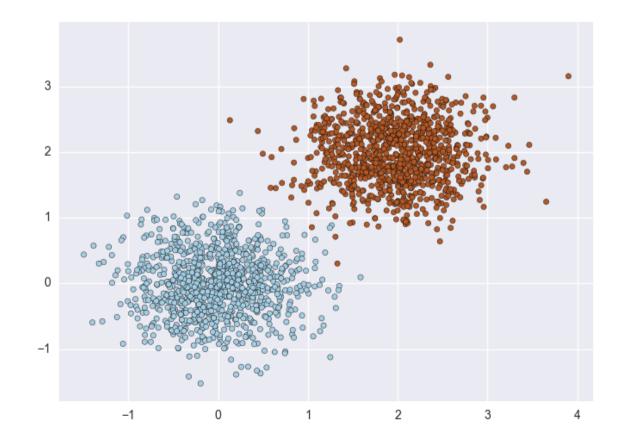
Building a classifier over imbalanced data

Sources https://svds.com/learning-imbalanced-classes/ http://www.cs.pomona.edu/~dkauchak/classes/f13/cs451-f13/

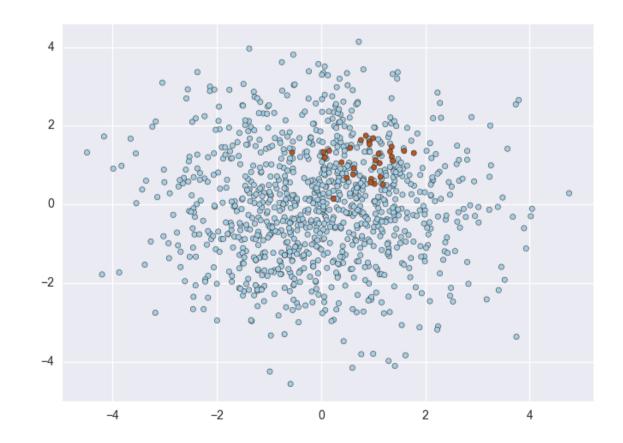
Imbalanced classes

 Most classification methods assume classes are reasonably balanced



Imbalanced classes

• In reality it is quite common to have a very popular class and a rare (yet interesting) one



Imbalanced classes

- Examples:
 - About 2% of credit card accounts are defrauded per year1. (Most fraud detection domains are heavily imbalanced.)
 - Medical screening for a condition is usually performed on a large population of people without the condition, to detect a small minority with it (e.g., HIV prevalence in the USA is ~0.4%).
 - **Disk drive failures** are approximately ~1% per year.
 - The conversion rates of online ads has been estimated to lie between 10-3 to 10-6.
 - Factory production defect rates typically run about 0.1%.

Imbalanced data

99.997% not-phishing

abeled data

0.003% phishing

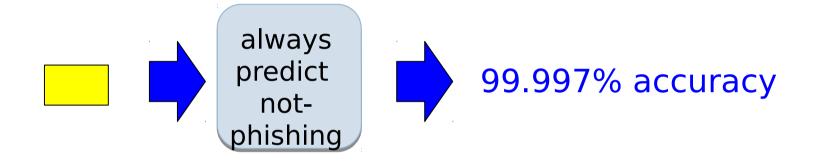
The phishing problem is what is called an **imbalanced data** problem

This occurs where there is a large discrepancy between the number of examples with each class label

e.g. for our 1M example dataset only about 30 would actually represent phishing e-mails

What is probably going on with our classifier?

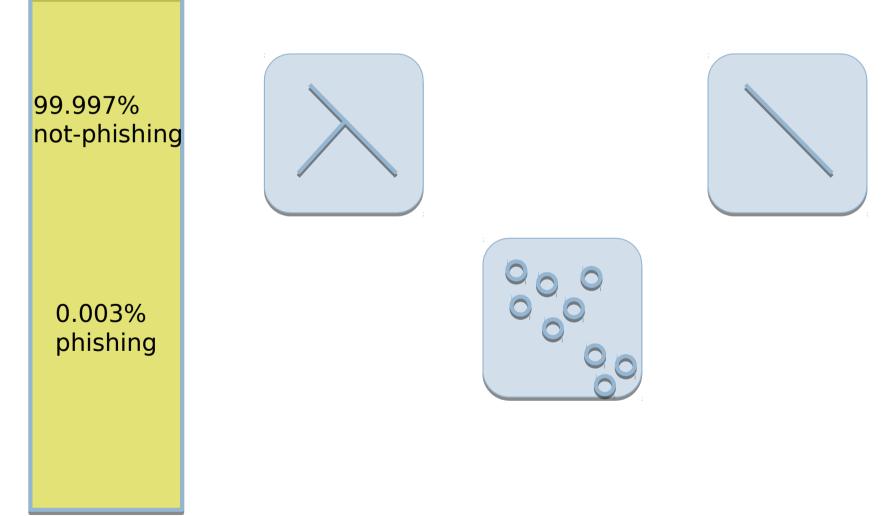
Imbalanced data



Why does the classifier learn this?

Imbalanced data: current classifiers

labeled data



How will our current classifiers do on this problem?

Imbalanced data: current classifiers

All will do fine if the data can be easily separated/distinguished

Decision trees:

- explicitly minimizes training error
- when pruning pick "majority" label at leaves
- tend to do very poor at imbalanced problems

k-NN:

• even for small k, majority class will tend to overwhelm the vote

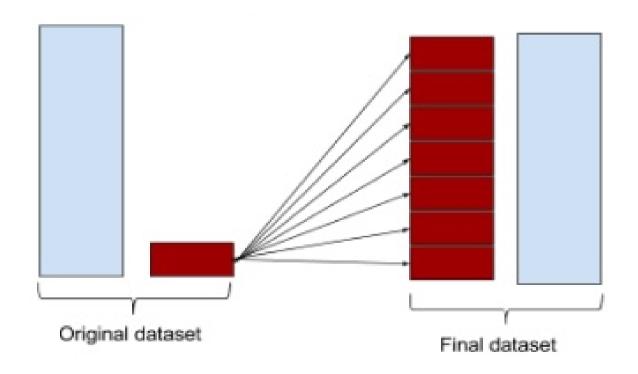
perceptron:

- can be reasonable since only updates when a mistake is made
- can take a long time to learn

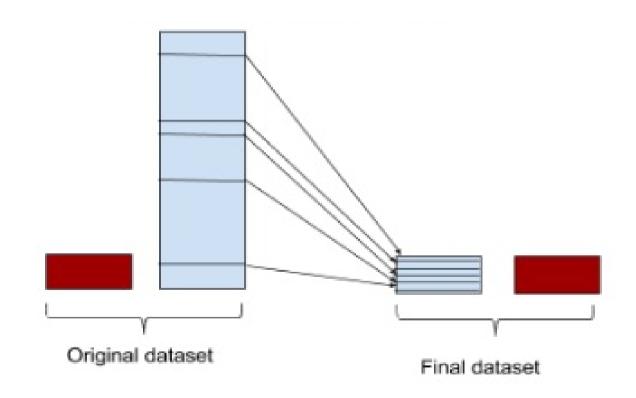
Handling imbalanced data

- Possible alternatives
 - Do nothing and hope to be lucky
 - Balance the training set in some way:
 - Oversample the minority class
 - Undersample the majority class Synthesize new minority classes
 - Throw away minority examples and switch to an anomaly detection framework
 - At the algorithm level:
 - Adjust the class weight (misclassification costs)
 - Adjust the decision threshold
 - Modify an existing algorithm to be more sensitive to rare classes
 - Construct an entirely new algorithm to perform well on imbalanced data

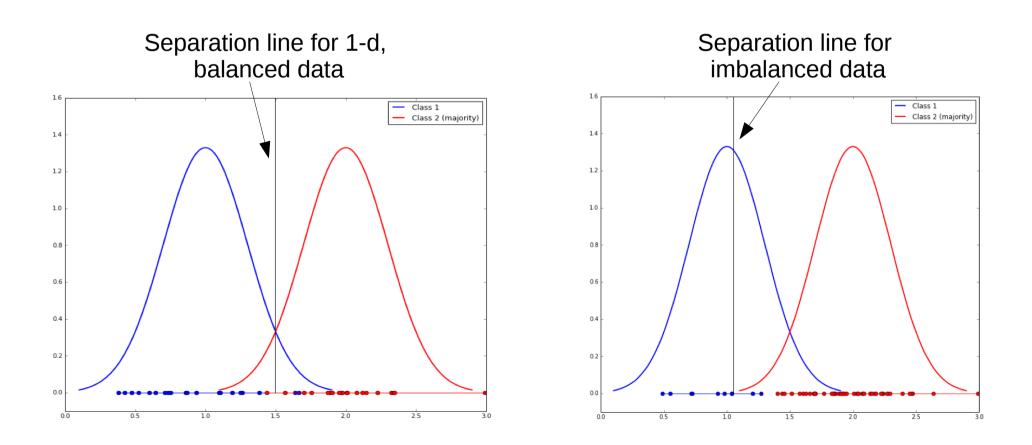
• Oversampling the minority class



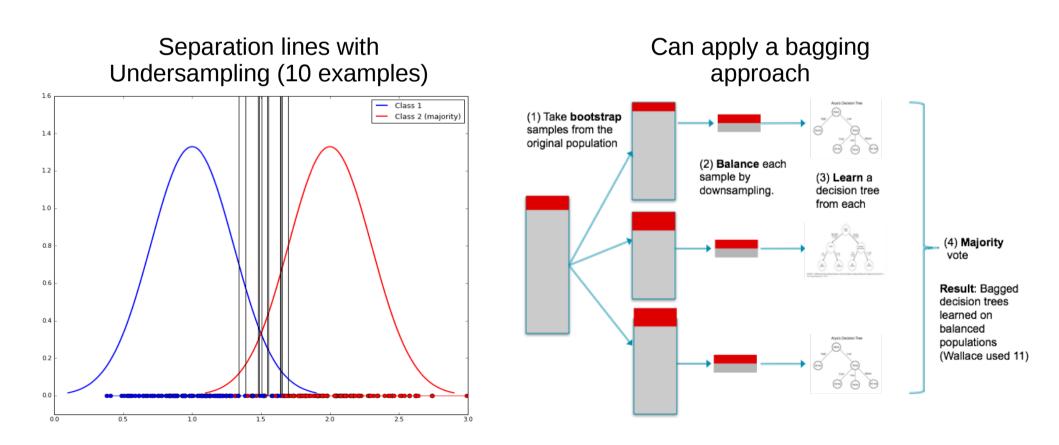
• Undersampling the majority class



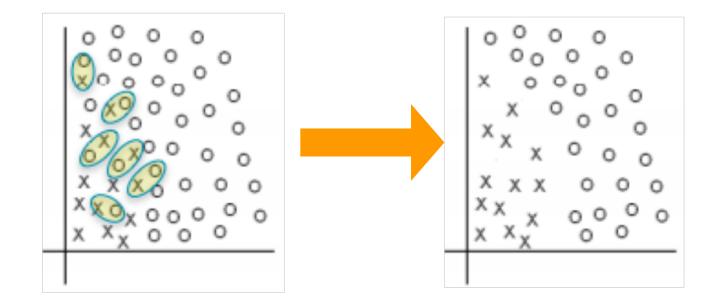
- Undersampling the majority class
- Bayesian argument (Wallace et al., ICDM 2011)



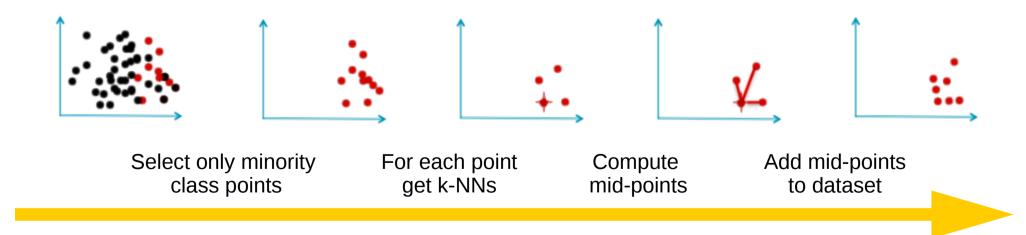
- Undersampling the majority class
- Bayesian argument (Wallace et al., ICDM 2011)



- Smart undersampling
 - Remove some majority class points
 - Neighbor-based approaches, e.g. Tomek links
 - Remove majority points having as NN a minority point

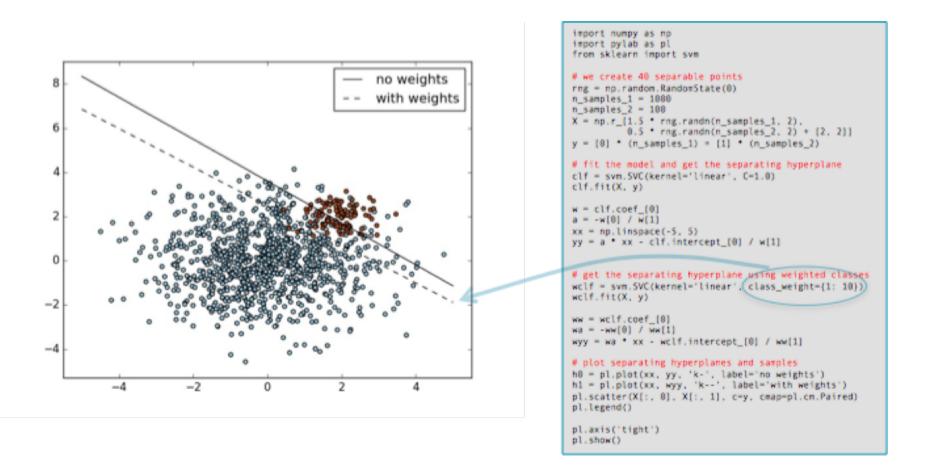


- Smart oversampling
 - Add some minority class points
 - E.g. SMOTE (Synthetic Minority Oversampling Technique)
 - Add points through interporlation



Adjusting class weights

- Example from Python scikit-learn
 - Some classifiers have a "class_weight" parameter



Related topic: evaluating classifiers on imbalanced data

- When classes are **slightly** imbalanced, no balancing is need
- Yet, take that into consideration when evaluating performances
- E.g.: Assume the test set contains 100 records Positive cases = 75, Negative cases = 25
 - Is a classifier with 70% accuracy good?
 - No, the trivial classifier (always positive) reaches 75%

Positive cases = 50, Negative cases = 50

- Is a classifier with 70% accuracy good?
- At least much better than the trivial classifier
- Take-home message
 - accuracy scores should be compared against some baseline classifier, e.g. Majority class classifier or a simple-yet-not-trivial one

Similar situation: multiclass problems

- Assume N classes
- If classes are perfectly balanced, a trivial classifier (e.g. majority) will yield A_{trivial} ~100/N % accuracy

- N=2
$$\rightarrow$$
 A_{trivial} ~ 50%

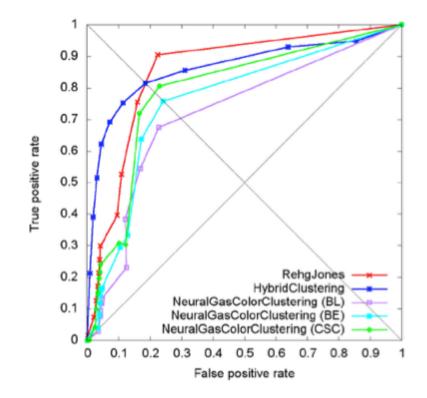
$$-$$
 N=4 \rightarrow A_{trivial} \sim 25%

- Goodness of accuracy of a model should be compared against $\mathsf{A}_{\mathsf{trivial}}$
 - If N=5, an accuracy of 40% would look large

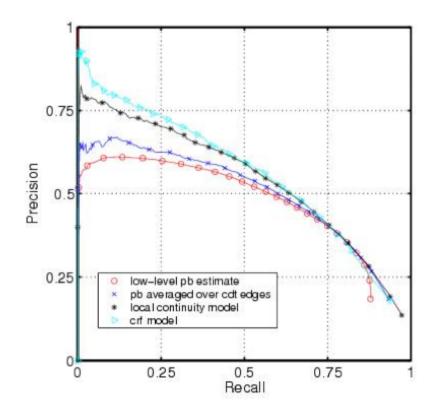
- Two slightly different objectives
 - Classifying = assigning a record to a class
 - Scoring/ranking = assigning probabilities of belonging to a class
- Several classification methods compute scores, and then assign class
 - Score p > 50% \rightarrow class = Y
 - Otherwise \rightarrow class = N
- E.g.: decision trees have p = #positive/#negative cases over each leaf

- What if we generalize the schema into:
 - Score $p > X\% \rightarrow class = Y$
 - Otherwise \rightarrow class = N
- For each X (in [0-100]) we get a different set of predictions
 - The confusion matrix changes
 - All indicators derived from it change
 - Accuracy
 - TPR
 - TNR

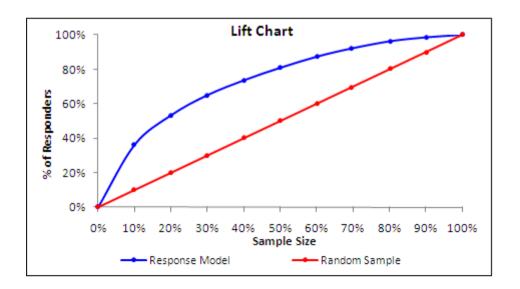
- Deeper insights on our model can be obtained looking at how performances change with X
 - ROC curve: plots TPR vs. FPR



- Deeper insights on our model can be obtained looking at how performances change with X
 - Precision vs. recall



- Deeper insights on our model can be obtained looking at how performances change with X
 - Lift chart: % of positive cases vs. % of dataset classified as Y



Notice: "Lift chart" is a rather general term, often used to identify also other kinds of plots. Don't get confused!

Again on evaluation: Application example

- From Lift chart we can easily derive an "economical value" plot, e.g. in target marketing
 - Question: Given our predictive model, how many customers should we target to maximize income?
- Simple economical model
 - Profit = UnitB*MaxR*Lift(X) UnitCost*N*X/100
 - UnitB = unit benefit, UnitCost = unit postal cost
 - N = total customers, MaxR = expected potential respondents in all population (N)
 - Lift(X) = lift chart value for X, in [0,..,1]

Again on evaluation: Application example

- From Lift chart we can easily derive an "economical value" plot, e.g. in target marketing
 - Question: Given our predictive model, how many customers should we target to maximize income?

