
  

Building a classifier 
over imbalanced data

Sources
https://svds.com/learning-imbalanced-classes/

http://www.cs.pomona.edu/~dkauchak/classes/f13/cs451-f13/

https://svds.com/learning-imbalanced-classes/
http://www.cs.pomona.edu/~dkauchak/classes/f13/cs451-f13/


  

Imbalanced classes

● Most classification methods assume classes 
are reasonably balanced



  

Imbalanced classes

● In reality it is quite common to have a very 
popular class and a rare (yet interesting) one



  

Imbalanced classes

● Examples:
– About 2% of credit card accounts are defrauded per year1. 

(Most fraud detection domains are heavily imbalanced.)

– Medical screening for a condition is usually performed on a 
large population of people without the condition, to detect a 
small minority with it (e.g., HIV prevalence in the USA is 
~0.4%).

– Disk drive failures are approximately ~1% per year.

– The conversion rates of online ads has been estimated to lie 
between 10-3 to 10-6.

– Factory production defect rates typically run about 0.1%.



Imbalanced data
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The phishing problem is what is called 
an imbalanced data problem

This occurs where there is a large 
discrepancy between the number of 
examples with each class label

e.g. for our 1M example dataset only 
about 30 would actually represent 
phishing e-mails

What is probably going on with our classifier?



Imbalanced data

always 
predict 

not-
phishing

99.997% accuracy

Why does the classifier learn this?



Imbalanced data: current 
classifiers
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How will our current classifiers do on this problem?



Imbalanced data: current 
classifiers

All will do fine if the data can be easily 
separated/distinguished

Decision trees: 
 explicitly minimizes training error
 when pruning pick “majority” label at leaves
 tend to do very poor at imbalanced problems

k-NN:
 even for small k, majority class will tend to overwhelm the vote

perceptron:
 can be reasonable since only updates when a mistake is made
 can take a long time to learn



Handling imbalanced data

● Possible alternatives
– Do nothing and hope to be lucky
– Balance the training set in some way:

● Oversample the minority class
● Undersample the majority class

Synthesize new minority classes

– Throw away minority examples and switch to an anomaly 
detection framework

– At the algorithm level:
● Adjust the class weight (misclassification costs)
● Adjust the decision threshold
● Modify an existing algorithm to be more sensitive to rare classes

– Construct an entirely new algorithm to perform well on 
imbalanced data



Balancing the dataset

● Oversampling the minority class



Balancing the dataset

● Undersampling the majority class



Balancing the dataset

● Undersampling the majority class
● Bayesian argument (Wallace et al., ICDM 2011)

Separation line for 1-d, 
balanced data

Separation line for 
imbalanced data



Balancing the dataset

● Undersampling the majority class
● Bayesian argument (Wallace et al., ICDM 2011)

Separation lines with
Undersampling (10 examples)

Can apply a bagging
approach



Balancing the dataset

● Smart undersampling
– Remove some majority class points

– Neighbor-based approaches, e.g. Tomek links
● Remove majority points having as NN a minority point



Balancing the dataset

● Smart oversampling
– Add some minority class points

– E.g. SMOTE (Synthetic Minority Oversampling Technique)
● Add points through interporlation

Select only minority 
class points

For each point
get k-NNs

Compute 
mid-points

Add mid-points
to dataset



Adjusting class weights

● Example from Python scikit-learn
– Some classifiers have a “class_weight” parameter



Related topic: evaluating classifiers 
on imbalanced data

● When classes are slightly imbalanced, no balancing is need
● Yet, take that into consideration when evaluating 

performances
● E.g.: Assume the test set contains 100 records

     Positive cases = 75, Negative cases = 25
● Is a classifier with 70% accuracy good?
● No, the trivial classifier (always positive) reaches 75%

     Positive cases = 50, Negative cases = 50
● Is a classifier with 70% accuracy good?
● At least much better than the trivial classifier

● Take-home message
– accuracy scores should be compared against some baseline 

classifier, e.g. Majority class classifier or a simple-yet-not-trivial one



Similar situation: 
multiclass problems

● Assume N classes
● If classes are perfectly balanced, a trivial 

classifier (e.g. majority) will yield Atrivial ~100/N % 
accuracy
– N=2  → Atrivial ~ 50%

– N=4  → Atrivial ~ 25%

● Goodness of accuracy of a model should be 
compared against Atrivial

– If N=5, an accuracy of 40% would look large



Again on evaluation: 
scoring/ranking vs. classifying

● Two slightly different objectives
– Classifying = assigning a record to a class

– Scoring/ranking = assigning probabilities of belonging 
to a class

● Several classification methods compute scores, and 
then assign class
– Score p > 50% → class = Y

– Otherwise → class = N

● E.g.: decision trees have p = #positive/#negative 
cases over each leaf



Again on evaluation: 
scoring/ranking vs. classifying

● What if we generalize the schema into:
– Score p > X% → class = Y

– Otherwise → class = N

● For each X (in [0-100]) we get a different set of 
predictions

– The confusion matrix changes

– All indicators derived from it change
● Accuracy
● TPR
● TNR
● ...



Again on evaluation: 
scoring/ranking vs. classifying

● Deeper insights on our model can be obtained looking 
at how performances change with X

– ROC curve: plots TPR vs. FPR 



Again on evaluation: 
scoring/ranking vs. classifying

● Deeper insights on our model can be obtained looking 
at how performances change with X

– Precision vs. recall



Again on evaluation: 
scoring/ranking vs. classifying

● Deeper insights on our model can be obtained looking 
at how performances change with X

– Lift chart: % of positive cases vs. % of dataset 
classified as Y

Notice: “Lift chart” is a rather general term, often used to 
identify also other kinds of plots. Don’t get confused!



Again on evaluation: 
Application example

● From Lift chart we can easily derive an “economical 
value” plot, e.g. in target marketing

– Question: Given our predictive model, how many 
customers should we target to maximize income?

● Simple economical model

– Profit = UnitB*MaxR*Lift(X)  -  UnitCost*N*X/100
● UnitB = unit benefit, UnitCost = unit postal cost
● N = total customers, MaxR = expected potential 

respondents in all population (N)
● Lift(X) = lift chart value for X, in [0,..,1]



Again on evaluation: 
Application example

● From Lift chart we can easily derive an “economical 
value” plot, e.g. in target marketing

– Question: Given our predictive model, how many 
customers should we target to maximize income?

UnitB = 6€ N=30000 
MaxR = 10500 UnitCost = 2.30€

Optimal X = 40%
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