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* Finding chance occurrences in data that look like interesting
patterns, but which do not generalize, is called over-fitting the data

 We want models to apply not just to the exact training set but to the
general population from which the training data came

- Generalization
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Over-fitting

* The tendency of DM procedures to tailor models to the
training data, at the expense of generalization to
previously unseen data points.

» All data mining procedures have the tendency to over-fit to some
extent

Some more than others.
« “If you torture the data long enough, it will confess”

* There is no single choice or procedure that will eliminate over-fitting

recognize over-fitting and manage complexity in a principled way.
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Fitting Graph
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Over-fitting in tree induction
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Over-fitting in linear discriminants

f(X) — WO + W1x1 + szz + W3X3
f(x) =wy +wixy + woxy + Wixg + WXy + WeXs
2

f(x) =wy +wixg + Wyxy, + Waxs + WeXy + WsXs + Wi

F(x) = wg + wyxy + WeXxy + Waxs + WeXy + WeXs + WeXZ + Wy * x5 /X3
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Example: Classifying Flowers
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Example: Classifying Flowers
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Example: Classifying Flowers
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Example: Classifying Flowers
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Need for holdout evaluation

Good Over-fitting

. In sample evaluation is in favor or “memorizing”
. On the training data the right model would be best

. But on new data it would be bad
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Over-fitting
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« Over-fitting: Model “memorizes” the properties of the particular training
set rather than learning the underlying concept or phenomenon
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Holdout validation

« We are interested in generalization

The performance on data not used for training

« Given only one data set, we hold out some data for evaluation

Holdout set for final evaluation is called the test set

« Accuracy on training data is sometimes called “in-sample”
accuracy, vs. “out-of-sample” accuracy on test data
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Cross-Validation

Five folds
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Cross-Validation
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From Holdout Evaluation to Cross-Validation

» Not only a simple estimate of the generalization performance, but
also some statistics on the estimated performance,

such as the mean and variance

 Better use of a limited dataset

Cross-validation computes its estimates over all the data
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Let’s focus back in on actually mining the data..

Business . Data
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Evaluation

Which customers should TelCo
target with a special offer, prior
to contract expiration?
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Fold accuracy
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» Different modeling procedures may have different performance on
the same data

« Different training sets may result in different generalization
performance

» Different test sets may result in different estimates of the generation
performance

« If the training set size changes, you may also expect different
generalization performance from the resultant model
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Learning Curves
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« For smaller training-set sizes, logistic regression yields better

generalization accuracy than tree induction

- For smaller data, tree induction will tend to over-fit more

Classification trees are a more flexible model representation than
linear logistic regression

Flexibility of tree induction can be an advantage with larger training
sets:

- Trees can represent substantially nonlinear relationships between the
features and the target
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Learning curves vs Fitting graphs

* A learning curve shows the generalization performance plotted
against the amount of training data used

« Afitting graph shows the generalization performance as well as the
performance on the training data, but plotted against model
complexity

» Fitting graphs generally are shown for a fixed amount of training
data
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Tree Induction:

Post-pruning

- takes a fully-grown decision tree and discards unreliable parts

Pre-pruning

- stops growing a branch when information becomes unreliable

Linear Models:

Feature Selection

Regularization

- Optimize some combination of fit and simplicity
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Regularized linear model:

argmax|fit(x, w) — A * penalty(w)]
w

 “L2-norm”
- The sum of the squares of the weights

- L2-norm + standard least-squares linear regression = ridge regression

 “L1-norm”
- The sum of the absolute values of the weights
- L1-norm + standard least-squares linear regression = lasso

- Automatic feature selection
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Nested Cross-Validation
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Thanks!
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Questions?
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