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K-Means



K-Means Clustering

Partitional clustering approach

. Number of clusters, K, must be specified

. Each cluster is associated with a centroid (center point)

* Each pointis assigned to the cluster with the closest centroid
e The basic algorithm is very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change




Example of K-Means Clustering
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K-Means Clustering — Details

Initial centroids are often chosen randomly.
. Clusters produced vary from one run to another.

* The centroid is (typically) the mean of the points in the cluster.

. ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
* K-means will converge for common similarity measures mentioned above.

*  Most of the convergence happens in the first few iterations.

. Often the stopping condition is changed to ‘Until relatively few points change clusters’
e ComplexityisO(n*K*1*d)
. n = number of points, K = number of clusters,

| = number of iterations, d = number of attributes



1.0

Evaluating K-Means Clusters

* Most common measure is Sum of Squared Error (SSE)
* For each point, the error is the distance to the nearest cluster

0.0

* To get SSE, we square these errors and sum them. 0500 0s

SSE = i Zdistz(ml.,x)

i=1 xeC,

X is a data point in cluster C, and m;, is the representative point for cluster Ci

can show that mi corresponds to the center (mean) of the cluster
- Given two sets of clusters, we prefer the one with the smallest error
One easy way to reduce SSE is to increase K, the number of clusters

- A good clustering with smaller K can have a lower SSE than a poor clustering
with higher K



Two different K-Means Clusterings
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Limitations of K-Means

» K-Means has problems when clusters are of differing
* Sizes
* Densities
* Non-globular shapes

* K-Means has problems when the data contains outliers.



Limitations of K-Means: Differing Sizes
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Overcoming K-Means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.



Limitations of K-Means: Differing Density

Original Points K-means (3 Clusters)



Overcoming K-Means Limitations
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Limitations of K-Means: Non-globular Shapes
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Overcoming K-Means Limitations

Original Points K-means Clusters



Pre-processing and Post-processing

* Pre-processing
e Normalize the data
e Eliminate outliers

* Post-processing

Eliminate small clusters that may represent outliers

Split ‘loose’ clusters, i.e., clusters with relatively high SSE
Merge clusters that are ‘close’ and that have relatively low SSE

Can use these steps during the clustering process
* |[SODATA



Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids
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10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other
have only one.



10 Clusters Example
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Solutions to Initial Centroids Problem

Multiple runs
* Helps, but probability is not on your side

Sample and use hierarchical clustering to determine initial centroids

Select more than k initial centroids and then select among these initial centroids
e Select most widely separated

* Postprocessing

* Generate a larger number of clusters and then perform a hierarchical clustering

Bisecting K-means
* Not as susceptible to initialization issues



K-Means Extensions

Bisecting K-Means



Bisecting K-means

 Variant of K-Means that can produce a hierarchical clustering
* The number of clusters K must be specified.
 Start with a unique cluster containing all the points.

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3:  Select the cluster with the highest SSE to the list of clusters

for : = 1 to number_of _iterations do

Bisect the selected cluster using basic 2-Means

Add the two clusters from the bisection to the list of clusters.

4
5
6: end for
7
8: until Until the list of clusters contains K clusters




Bisecting K-means Limitations

* The algorithm can be also exhaustive and terminating at a singleton
clusters if K is not specified.

* Terminating at singleton clusters
* |s time consuming
 Singleton clusters are meaningless (i.e., over-splitting)
* Intermediate clusters are more likely to correspond to real classes

* Bisecting K-Means do not use any criterion for stopping bisections
before singleton clusters are reached.



K-Means Extensions

X-Means



Bayesian Information Criterion (BIC)

* A strategy to stop the Bisecting algorithm
when meaningful clusters are reached to
avoid over-splitting.
—— Parent cluster:

* The BIC can be adopted as splitting BIC(K=1)=1980
criterion of a cluster in order to decide
whether a cluster should split or no. \

* BIC measures the improvement of the @ @ — Imgt;ergf'tmg
cluster structure between a cluster and its BIC(K=2)=2245

two children clusters.

* If the BIC of the parent is less than BIC of
the children than we accept the bisection.



X-Means

For k in a given range [r,r,.,,J:

1.
2.

Improve Params: run K-Means with with the current k.

Improve Structure: recursively split each cluster in two (Bisecting 2-
Means) and use local BIC to decide to keep the split. Stop if the
current structure does not respect local BIC or the number of

clusters is higher than r,,,.

Store the actual configuration with a global BIC calculated on the
whole configuration

If k >r,, stop and return the best model w.r.t. the global BIC.



X-Means

1. K-means with k=3

2. Split each centroid in 2 children
moved a distance proportional to
the region size in opposite
direction (random)

3. Run 2-means in
each region locally

4. Compare BIC of parent
and children

higher BIC survives

4. Only centroids with
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BIC Formula in X-Means

* The BIC score of a data collection is defined as (Kass and Wasserman, 1995):

n P
BIC(M )=I (D}-—LlogR
X JoJ 2
. l]- (D) is the log-likelihood of the dataset D

* p;is a function of the number of independent parameters: centroids coordinates,
variance estimation.

* Ris the number of points of a cluster, M is the number of dimensions

* Approximate the probability that the clustering in M, is describing the real
clusters in the data



BIC Formula in X-Means

* Adjusted Log-likelihood of the model.

* The likelihood that the data is “explained by” the clusters according to the
spherical-Gaussian assumption of K-Means

BIC(M )=1 (Dj—ilogR
i 2

* Focusing on the set D, of points which belong to centroid n

: R, R, - M R, — K
(Dn) = —=*log(2m) — = :

+R,log R, — R, log R

log(0%) —

* |t estimates how closely to the centroid are the points of the cluster.



K-Means Origins
Expectation Maximization



Model-based Clustering (probabilistic)

* |n order to understand our data, we will assume that there is a
generative process (a model) that creates/describes the data, and we
will try to find the model that best fits the data.

* Models of different complexity can be defined, but we will assume that our
model is a distribution from which data points are sampled

 Example: the data is the height of all people in Greece

* In most cases, a single distribution is not good enough to describe all
data points: different parts of the data follow a different distribution
 Example: the data is the height of all people in Greece and China
* We need a mixture model
 Different distributions correspond to different clusters in the data.



Expectation Maximization Algorithm

* Initialize the values of the parameters in ® to some random values

* Repeat until convergence
e E-Step: Given the parameters ® estimate the membership probabilities P(Gj|xl-)

* M-Step: Given the probabilities P(Gj|xl-), calculate the parameter values 0 that
(in expectation) maximize the data likelihood

 Examples
e E-Step: Assignment of points to clusters
* K-Means: hard assignment, EM: soft assignment

* M-Step: Parameters estimation
* K-Means: Computation of centroids, EM: Computation of the new model parameters



EM in K-Means centroids

* |nitialize the values of the parameters in ® to some random values
(randomly select the centroids)

* Repeat until convergence

e E-Step: Given the parameters 0 (given the centroids) estimate the

membership probabilities P(Gj|xl-) (assign points to clusters based on
distances with the centroids)

* M-Step: Given the probabilities P(Gj|xl-) (given the membership of points to
clusters, i.e., 100% probability of belonging to a cluster) calculate the
parameter values ® that (in expectation) maximize the data likelihood
(calculate the new centroids as mean values, i.e., those that minimize the
distances with the other points in the cluster)



Expectation Maximization Algorithm

Algorithm 9.2 EM algorithm.
1: Select an initial set of model parameters.
(As with K-means, this can be done randomly or in a variety of ways.)
2: repeat
Expectation Step For each object, calculate the probability
that each object belongs to each distribution, i.e., calculate
prob(distribution j|x;, ©).

4:  Maximization Step Given the probabilities from the expectation step.,
find the new estimates of the parameters that maximize the expected
likelihood.

: until The parameters do not change.

(Alternatively, stop if the change in the parameters is below a specified

threshold.)

(6 {




K-Means Brother

K-Modes



K-Modes

ko n
Minimise P(W.Q) =Y > w;;d(X;. O))
[=1 i=l

subject to iwi,; =1, 1<i<n
;-,116{0,1}, l<i<n 1<I<k
* X={X,,.., X, }is the dataset of objects.
* X;=[x,,..., X,,] is an object i.e., a vector of m categorical attributes
* Wis a matrix n x k, with w;, equal to 1 if X; belongs to Cluster /, 0 otherwise.

*Q={Q,,... Q }is the set of representative objects (mode) for the k clusters.

* d(X;, Q) is a distance function for objects in the data



K-Modes: Distance

e K-Means as distance uses e K-Modes as distance uses the
Euclidean distance number of mismatches between

d(X,Y)=

i=1

the attributes of two objects.

(x, =) diX, Yy =Y 60, )
=1

o]0 &y =)
5(36],)7])—{1 (xj#yj)



K-Modes: Mode

* K-Modes uses the mode as representative object of a cluster

* Given the set of objects in the cluster C,the mode is get computing
the max frequency for each attribute

n

fr(Aj =€ | X)) = Z’k




K-Modes: Algorithm

Randomly select the initial objects as modes

2. Scan of the data to assign each object to the
closer cluster identified by the mode

3. Re-compute the mode of each cluster

Repeat the steps 2 and 3 until no object
changes the assigned cluster



K-Means Brother

Mixture Gaussian Model



Gaussian Distribution

 Example: the data is the height of all people in Greece
* Experience has shown that this data follows a
Gaussian (Normal) distribution

_(x—p)*
e 20°
V2o

- 1 = mean, o = standard deviation

P(x) =



Mixture Gaussian Model

e What is a model?

* A Gaussian distribution is defined by the mean u and the standard deviation o
* We define our model as the pair of parameters 6 = (u, o)

* More generally, a model is defined as a vector of parameters 6

* We want to find the normal distribution N (u, o) that best fits our data

* Find the best values for 11 and o
e But what does “best fit” mean?



Maximum Likelihood Estimation (MLE)

* Suppose that we have a vector X = {x4, ..., x,,} of values
* We want to fit a Gaussian model N (u, o) to the data
* Probability of observing a point x;

1 _(xj—u)?
P(X) = nP(xi) - e 202
| | )

* We want to find the parameters 6 = (u, o) that maximizes the
probability P(X|6)



Maximum Likelihood Estimation (MLE)

* The probability P(X|6) as a function of @ is the Likelihood function

L®) ﬁﬂx—l =
= e 20
X, 20

* It is usually easier to work with the Log-Likelihood function

n

xi—w? 1
LL(9)=—Z( LZJ;) —EnlogZH—nlogJ

i=1

e Thus, the Maximum Likelihood Estimation for the Gaussian Model
consists in flndmg the parameters 1, 0 that maximize LL(6)

::SII—‘

= Ux ot = —Z(xl_ﬂ)z = Ux

Sample Mean Sample Variance

# —_—
i=1



Maximum Likelihood Estimation (MLE)

* Note: these are also the most likely parameters given the data.

P(X|6)P(6)

P(B|X) = P(X)

* If we have no prior information about @, or X, then maximizing
P(0|X) is the same as maximizing P(X|8).



Mixture of Gaussians

* Suppose that you have the heights of people from Greece and China
and the distribution looks like the figure below (dramatization)
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Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture of Gaussians

* In this case the data is the result of the mixture of two Gaussians

* One for Greek people, and one for Chinese people
|dentifying for each value which Gaussian is most likely to have generated it

will give us a clustering.
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Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture Model

* A value x; is generated according to the
following process:

* First select the nationality

* With probability 7, select Greek, with
probability 7, select China (7, + 7, = 1)

* Given the nationality, generate the point
from the corresponding Gaussian
e P(x;|6;)~N(uz,oz) if Greece
* P(x;|6,)~N(uc,o.) if China



Assign a pointto a Describe a cluster.
cluster. In K-Means they In K-Means they

. are the membership: are the centroids.
Mixture Model nard assignment.

* Our model has the following parameters ® = (g, e, Ug, Ker O, Oc)

Mixture probabilities Distribution Parameters

* For value x;, we have:

P(x;|®) = n;P(x;|0;) + m-P(x;16,)

* Forallvalues X = {xq, ..., x,}

pixio) = | [Pcle)
=1

* We want to estimate the parameters that maximize the Likelihood



Mixture Model

* Once we have the parameters 6 = (1., ¢, Ug, Oc, e, Oc),
we can estimate the membership probabilities
P(G|x;) and P(C|x;) for each point x;:

* This is the probability that point x; belongs to the Greek or
the Chinese population (cluster)

P(x;|G)P(G)

PICOPG) + Pl OP(O)
P(x;|G)mg

- P(x;|G)mg + P(x;|C)me

P(Glx;) =




Mixture of Gaussians as EM

* Initialize the values of the parameters in & to some random values

* Repeat until convergence
e E-Step: Given the parameters 0 estimate the membership probabilities
P(G|x;) and P(C|x;).
* M-Step: Calculate the parameter values ® that (in expectation) maximize the
data likelihood.

1 Fraction of
ne = P(G|x;) =_Z | ra
¢ Z (Gl e =5 2, PClx) population in G,C

Wi (Clx) " P(Glx,)

_ ; P(G|x; _
Z n*rrC He = Z " = X; !VlLE Estimates
=1 — N*Tg if ='s were fixed

mn

P(C|x; = P(Glx;
Z (lx)(x: Ju-C)z J{%:Z ( |x)(xt .uG)

n*nc
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