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Similarity and Dissimilarity

e Similarity
* Numerical measure of how alike two data objects are.
* |s higher when objects are more alike.
e Often fallsin the range [0,1]
* Dissimilarity
* Numerical measure of how different are two data objects
* Lower when objects are more alike
 Minimum dissimilarity is often O
* Upper limit varies

* Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for one Attribute

p and q are the attribute values for two data objects.

Attribute Dissimilarity Similarity
Type
0 ifp= 1 ifp=
Nominal d= 1 p=d s = 1 P
1 ifp#q 0 ifp#gq
__ |p—4
n—1
Ordinal (values mapped to integers 0 ton—1, | s =1 — %L
where n is the number of values)
Interval or Ratio | d = |p — q| s=—d,s= ﬁ or
s—1— d—min_d

max_d—min_d

Table 5.1. Similarity and dissimilarity for simple attributes




Euclidean Distance

d(x,y) = \ > (x — yi)?

where n is the number of dimensions (attributes) and x;

and y, are, respectively, the £’ attributes (components) or

data objects x and y. Standardization is necessary, if scales
differ.

e Standardization is necessary, if scales differ.



Euclidean Distance

Distance Matrix

3 _
point X y
1
2@p ol 0 5
p3 p4
1 - °® °® p2 2 0
02 p3 3 |
O ‘ | | | p4 5 1
0 2 3 5 6
pl p2 p3 p4
pl 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0




Minkowski Distance

* Minkowski Distance is a generalization of Euclidean Distance
n 1/r
dx,y) = | Y loe — il
k=1

Where r is a parameter, n is the number of dimensions (attributes) and
x, and y, are, respectively, the k™ attributes (components) or data
objects x and y.



Minkowski Distance: Examples

r=1. City block (Manhattan, taxicab, L, norm) distance.

* A common example of this is the Hamming distance, which is just the number of bits that are different
between two binary vectors

r = 2. Euclidean distance

r —oo. “supremum” (L__ norm, L _norm) distance.
* This is the maximum difference between any component of the vectors

Do not confuse r with n, i.e., all these distances are defined for all numbers of
dimensions.



Minkowski Distance

P
pl 0 4
p2 4 0
p3 4 2
p4 6 4
point X y

pl 0 2 L2 pl p2

p2 o) 0 pl 0 2.828

p3 3 1 p2 2.828 0

p4 5 1 p3 3.162 1414
p4 5.099 3.162
L, pl p2
pl 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0

Distance Matrix



Common Properties of a Distance

* Distances, such as the Euclidean, have some well-known properties.

1. d(x,y)=>0 forall xandyandd(x,y)=0onlyif
X =y. (Positive definiteness)

2. d(x,y)=d(y,x) forallxandy.(Symmetry)

3. d(x,z)<d(x,y)+d(y,z) forall pointsx,y, and z.
(Triangle Inequality)

where d(x, y) is the distance (dissimilarity) between points (data objects), x and y.

 Adistance that satisfies these properties is a metric



Common Properties of a Similarity

Similarities, also have some well-known properties.

1. s(x,y)=1(or maximum similarity) only if x = y.
(does not always hold, e.g., cosine)
2. s(x,y)=s(y,x) forallxandy. (Symmetry)

where s(x, y) is the similarity between points (data objects), x and y.



Binary Data

Categorical insufficient | sufficient good very good | excellent
pl 0 0 1 0 0
p2 0 0 1 0 0
p3 1 0 0 0 0
p4 0 1 0 0 0
item bread butter milk apple tooth-past
pl 1 1 0 1 0
p2 0 0 1 1 1
p3 1 1 1 0 0
p4 1 0 1 1 0




Similarity Between Binary Vectors

e Common situation is that objects, p and g, have only binary attributes

e  Compute similarities using the following quantities
My, = the number of attributes where p was 0 and q was 1
M,,=the number of attributes where p was 1 and qwas 0
Mg, = the number of attributes where p was 0 and g was O
M, = the number of attributes where p was 1 and q was 1

« Simple Matching and Jaccard Coefficients
SMC = number of matches / number of attributes
= (Mg + Myo) / (Mg + Myg + My, + M)

J = number of 11 matches / number of not-both-zero attributes values
=(My,)/ (Mg + Mg+ My,)



SMC versus Jaccard: Example

p=1000000000
q=0000001001

Mo, =2 (the number of attributes where p was 0 and g was 1)
My, =1 (the number of attributes where p was 1 and g was 0)
Moo =7 (the number of attributes where p was 0 and q was 0)

M;; =0 (the number of attributes where p was 1 and g was 1)

SMC = (M; + M)/ (Mg + Mg + My, + M) = (0+7) / (2+1+40+7) = 0.7

J=(My)/ (Mp; + M, +M;)=0/(2+1+0)=0



Document Data

- Q ® Q _ =4 ?
Tl S |<z| g | 8|2 |-2|5 |38
Document 1 3 0 5 0 2 6 2 0 2
Document 2 0 7 0 2 1 0 3 0 0
Document 3 0 1 0 0 1 2 0 3 0




Cosine Similarity

* If d, and d, are two document vectors, then
cos(dy, dy)= (d;edy)/ |1d|] 11dy]|

where e indicates vector dot productand || d || is the length of vector d.
* Example:

d,=3205000200
d,=1000000102

d,ed,= 3*1+2*0+0*0+5*0+0*0+0*0+0*0 +2*1+0*0+0*2 =5
|1d,]| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)%> = (42) %5 = 6.481

|1d,|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 05 = (6) 05 = 2.245

cos(d,, d,)=.3150



Using Weights to Combine Similarities

* May not want to treat all attributes the same.

* Use non-negative weights wy,

27]:=1 WEOESK(XY)
Yi=1 WkOk

e similarity(x,y) =

* Can also define a weighted form of distance

n L/r
d(x,y) = (Z’wkﬂ?k — ?Jk:r)
=1



Correlation

* Correlation measures the linear relationship between objects (binary
or continuous)

* To compute correlation, we standardize data objects, p and g, and
then take their dot product (covariance/standard deviation)

covariance(x, y) Sy
standard_deviation(x) * standard_deviation(y)  s; s;’

corr(x,y) =



Visually Evaluating Correlation
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Mixed/Heterogenous Distances

 What happen if we have data with both continuous and categorical
attributes?

* Option 1: discretize continuous attributes and use categorical
distances like Jaccard, SMC, etc.

EuclideanManhattan,etc:
* Option 3: define a new heterogenous distance like:

* d(Xa Y) — ncat/ n dcat(Xcata YCat) T ncon/ n dcon(Xcona YCOII)
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