DATA MINING 1 Data Similarity

Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 2 "Introduction to Data Mining", 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Università

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for one Attribute

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$
		$s = 1 - \frac{d - min_d}{max_d - min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where n is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects \mathbf{x} and \mathbf{y} . Standardization is necessary, if scales differ.

• Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

• Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects \boldsymbol{x} and \boldsymbol{y} .

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L_1 norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Common Properties of a Distance

- Distances, such as the Euclidean, have some well-known properties.
 - 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all x and y and $d(\mathbf{x}, \mathbf{y}) = 0$ only if $\mathbf{x} = \mathbf{y}$. (Positive definiteness)
 - 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)
 - 3. $d(x, z) \le d(x, y) + d(y, z)$ for all points x, y, and z. (Triangle Inequality)

where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y} .

A distance that satisfies these properties is a metric

Common Properties of a Similarity

Similarities, also have some well-known properties.

- 1. $s(\mathbf{x}, \mathbf{y}) = 1$ (or maximum similarity) only if $\mathbf{x} = \mathbf{y}$. (does not always hold, e.g., cosine)
- 2. $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)

where $s(\mathbf{x}, \mathbf{y})$ is the similarity between points (data objects), \mathbf{x} and \mathbf{y} .

Binary Data

Categorical	insufficient	sufficient	good	very good	excellent
p1	0	0	1	0	0
p2	0	0	1	0	0
р3	1	0	0	0	0
p4	0	1	0	0	0
item	bread	butter	milk	apple	tooth-pas t
p1	1	1	0	1	0
p2	0	0	1	1	1
р3	1	1	1	0	0
p4	1	0	1	1	0

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities

```
M_{01} = the number of attributes where p was 0 and q was 1
```

 M_{10} = the number of attributes where p was 1 and q was 0

 M_{00} = the number of attributes where p was 0 and q was 0

 M_{11} = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients

```
SMC = number of matches / number of attributes
= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})
```

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

```
p = 1000000000
q = 0000001001
```

```
M_{01} = 2 (the number of attributes where p was 0 and q was 1)
```

 $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)

 $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7)/(2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Document Data

	team	coach	pla y	ball	score	game	n Wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Cosine Similarity

• If d_1 and d_2 are two document vectors, then

$$cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$$

where \bullet indicates vector dot product and ||d|| is the length of vector d.

• Example:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$d_1 \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - ullet Use non-negative weights $\,\omega_k$

•
$$similarity(\mathbf{x}, \mathbf{y}) = \frac{\sum_{k=1}^{n} \omega_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \omega_k \delta_k}$$

Can also define a weighted form of distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$

Correlation

- Correlation measures the linear relationship between objects (binary or continuous)
- To compute correlation, we standardize data objects, p and q, and then take their dot product (covariance/standard deviation)

$$corr(\mathbf{x}, \mathbf{y}) = \frac{covariance(\mathbf{x}, \mathbf{y})}{standard_deviation(\mathbf{x}) * standard_deviation(\mathbf{y})} = \frac{s_{xy}}{s_x s_y},$$

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Mixed/Heterogenous Distances

- What happen if we have data with both continuous and categorical attributes?
- Option 1: discretize continuous attributes and use categorical distances like Jaccard, SMC, etc.
- Option 2: pretend that categorical attributes can be represented with values and use continuous distances like Euclidean, Manhattan, etc.
- Option 3: define a new heterogenous distance like:
- $d(x, y) = n_{cat}/n \ d_{cat}(x_{cat}, y_{cat}) + n_{con}/n \ d_{con}(x_{con}, y_{con})$