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Time Series Forecasting (Prediction)

• Main difference between forecasting and classification: forecasting is about  
predicting a future state/value, rather than a current one.

• Applications:
• Temperature, Humidity, CO2 Emissions
• Epidemics
• Pricing, Sales Volumes, Stocks
• Forewarning of Natural Disasters (flooding, hurricane, snowstorm),
• Electricity Consumption/Demands

• Techniques:
• Statistical Methods,
• Machine Learning Classifiers
• Deep Neural Networks



Forecasting vs Regression

• Forecasting is time dependent: the basic 
assumption of a linear regression model that the 
observations are independent does not hold.

• Along with an increasing or decreasing trend, 
most TS have some form of seasonality trends, i.e. 
variations specific to a particular time frame. 



Time Series Characteristics



Time Series Components

• A given TS consists of three systematic components including level, 
trend, seasonality, and one non-systematic component called noise.
• Level: The average value in the series.

• Trend: The increasing or decreasing value in the series.

• Seasonality: The repeating short-term cycle in the series.

• Noise: The random variation in the series.

• A systematic component have consistency or recurrence and can be 
described and modeled.

• A Non-Systematic component cannot be directly modeled.



Combining Time Series Components

• A TS is an aggregate or combination of these four components.

• All series have a level and noise. The trend and seasonality components are optional.

• Additive Model: y(t) = Level + Trend + Seasonality + Noise
• Changes over time are consistently made by the same amount
• A linear trend is a straight line.
• A linear seasonality has the same frequency (width of cycles) and amplitude (height of cycles).

• Multiplicative Model: y(t) = Level * Trend * Seasonality * Noise
• A multiplicative model is nonlinear, such as quadratic or exponential. Changes increase or 

decrease over time.
• A nonlinear trend is a curved line.
• A non-linear seasonality has an increasing/decreasing frequency and/or amplitude over time.



Time Series Forecasting



It’s Difficult to Make Predictions, Especially About the Future
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ES and ARIMA models are the two most widely used 
approaches to time series forecasting, and provide 
complementary approaches to the problem. 



Evaluating Forecast Accuracy

• A forecast “error” is the difference between an observed value and its 
forecast. An “error” is not a mistake, is the unpredictable part.

• Forecast errors are different from residuals:
• Residuals are calculated on the training set while forecast errors are 

calculated on the test set. 

• Residuals are based on one-step forecasts while forecast errors can involve 
multi-step forecasts.

• We can measure forecast accuracy by summarizing the forecast errors 
in different ways.



Scale-Dependent Errors

• Cannot be used to make comparisons between TS that involve 
different units.

• The two most commonly used scale-dependent measures are based 
on the absolute errors or squared errors:



Percentage Errors

• Percentage errors are unit-free, and so are frequently used to compare 
forecast performances between data sets.

• The percentage error is given by

• The most commonly used measure is:

• Total and Median Absolute Percentage Error (TAPE, MedianApe) are also used.



Evaluation Measures from Regression

• Coefficient of determination R2

• is the proportion of the variance in the dependent variable that is predictable 
from the independent variable(s)

• Mean Squared/Absolute Error MSE/MAE
• a risk metric corresponding to the expected value of the squared 

(quadratic)/absolute error or loss

hat means predicted



Simple Forecasting Methods



Simple Forecasting Methods

• Average Method: the forecasts of all future values are equal to the 
average (or “mean”) of the historical data.

• Naïve Method: the forecasts of all future values are equal to the last 
value of the historical data.

• Drift Method: increase/decrease last value w.r.t. the amount of 
change over time (drift) as the average change in the historical data.



Exponential Smoothing



Simple Exponential Smoothing (SES)

• Is suitable for data with no clear trend or seasonal pattern.

• SES is in between the average and naive method.

• SES attaches larger weights to more recent observations than to 
observations from the distant past, while smallest weights are 
associated with the oldest observations

• Forecasts are calculated using weighted averages, where the weights 
decrease exponentially as observations come from further in the past.

• 0 ≤ 𝛼 ≤ 1 is the smoothing parameter



SES – Formalization in Components

• For SES the only component used is the level.

• Component form representations of SES comprise a forecast equation 
and a smoothing equation for each of the components in the method.

• where lt is the level of the TS at time t



Holt’s Linear Trend Method

• Holt extended simple exponential smoothing to allow the 
forecasting of data with a trend.

• where lt is the level of the TS at time t, bt estimates the trend of 
TS, 0 ≤ 𝛼 ≤ 1 is the smoothing parameter for the level and 0 ≤
𝛽∗ ≤ 1 is the smoothing parameter for the trend.



Holt-Winters’ Seasonal Method

• Holt (1957) and Winters (1960) extended Holt’s method to capture 
seasonality.

• m denotes the frequency of the seasonality, i.e., the number of 
seasons in a reference period, while 0 ≤ γ ≤ 1 − 𝛼 is the smoothing 
parameter for the seasonality.

• The additive method is preferred when the seasonal variations are 
constant through the TS 

• The multiplicative method is preferred when the seasonal variations 
are changing proportional to the level of the TS. 



Holt-Winters’ Seasonal Method

• Additive

• Multiplicative
k is the integer part 
of (h−1)/m, which 
ensures that the 
estimates of the 
seasonal indices 
come from the final 
period of the sample.



More on Exponential Smoothing

• ES methods are not restricted to those we have presented. 



ARIMA Models



Auto-Regressive Integrated Moving Averages

• The ARIMA forecasting for a stationary time series is a linear equation 
(like a linear regression).

• While ES are based on a description of the trend and seasonality, 
ARIMA models aim to describe the autocorrelations in the data.

• Before we introduce ARIMA models, we recall the concept of 
stationarity and the technique of differencing TS.



Stationarity (again)

• A stationary TS is one whose properties do not depend on the time at 
which the series is observed.

• TS with trends, or with seasonality, are not stationary: the trend and 
seasonality affect the value of the TS at different times. 

• A white noise series is stationary: it does not matter when you 
observe it, it looks much the same at any point in time.



Differencing (again)

• Differencing: compute the differences between consecutive 
observations.

• It is a possible transformation to make a non-stationary TS stationary.

• Indeed, it can help stabilize the mean of a TS by removing changes in 
the level, and thus eliminating (or reducing) trend and seasonality.

• In addition, transformations such as logarithms can help to stabilize 
the variance of a time series. 



Autoregressive Models

• In multiple regression model, we predict the variable of interest using 
a linear combination of predictors. 

• In an autoregression model, we forecast the variable of interest using 
a linear combination of past values of the variable. 

• The term autoregression indicates that it is a regression of the 
variable against itself.

• An autoregressive model of order p can be written as

• This is as an AR(p) model of order p (p = lag in the past)

white noise



Autoregressive Models

• We normally restrict AR models to stationary data, in which case 
some constraints on the values of the parameters are required.

• For AR(1): −1 ≤ 𝜙1 ≤ 1

• For AR(2): −1 ≤ 𝜙2 ≤ 1, 𝜙1+ 𝜙2< 1, 𝜙2− 𝜙1< 1

• When p>2 the restriction are much more complicated.



Moving Average Models

• Rather than using past values of the forecast variable in a regression, 
a MA model uses past forecast errors in a regression-like model.

• This is as a MA(q) model of order q (q = lag in the past).

• MA models should not be confused with the moving average 
smoothing.

• It is possible to write any stationary AR(p) as MA(∞)

white noise



Moving Average Models

• It is possible to write any stationary AR(p) as MA(∞)

• The reverse result holds if we impose some constraints on the MA 
parameters.

• Then the MA model is called invertible.

• The invertibility constraints for other models are similar to the 
stationarity constraints.

• For MA(1): −1 ≤ 𝜃1 ≤ 1

• For MA(2): −1 ≤ 𝜃2 ≤ 1, 𝜃1+𝜃2> −1, 𝜃1−𝜃2< 1

• When p>2 the restriction are much more complicated.



ARIMA Models (Non-Seasonal)

• If we combine differencing with an AR model and a MA model, we 
obtain a non-seasonal ARIMA model. ARIMA is an acronym for 
AutoRegressive Integrated Moving Average (“integration” is the 
reverse of differencing).

• where y’t is the differenced series.

• We call this model ARIMA(p,d,q) model, where p is the order of the 
autoregressive part, d is the degree of first differencing involved, q is 
the order of the moving average part



ACF plot

• The ACF plot shows the total correlation between different lag 
functions by calculating the correlation for TS with observations with 
previous time steps, called lags. 

• Thus we calculate the ACF for xt with xt+1 xt+2, etc.

Lags



PACF plot

• A partial autocorrelation is a summary of the relationship between an 
observation in a TS with observations at prior time steps with the relationships of 
intervening observations removed.

• The partial autocorrelation at lag k is the correlation that results after removing 
the effect of any correlations due to the terms at shorter lags.

Lags



ACF and PACF plots - Example

• There are three spikes in the ACF, 
followed by an almost significant 
spike at lag 4. In the PACF, there 
are three significant spikes, and 
then no significant spikes. 

• The pattern in the first three 
spikes is what we would expect 
from an ARIMA(3,0,0), as the 
PACF tends to decrease. 

• So in this case, the ACF and PACF 
lead us to think an ARIMA(3,0,0) 
model might be appropriate.



ARIMA – Parameters Estimation

• Once the model order has been identified (i.e., the values of p,d,q), 
we need to estimate the parameters 𝑐, 𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑝.

• Maximum Likelihood Estimation (MLE) can be used to find the values 
for these parameters.

• For ARIMA models, MLE is similar to the least squares estimates that 
would be obtained by minimizing

• Once the parameters are estimated they are placed in the equation 
and used to make the prediction of yt+1, yt+2, … , yt+n



Determining the order of an ARIMA model

• Akaike’s Information Criterion (AIC)

• Bayesian Information Criterion (BIC)

• k=1 if c=0, k=0 otherwise

• Good models are obtained by minimizing the AIC, or BIC

• We highlight that AIC, or BIC  are not good guides to selecting the 
appropriate d, but only for selecting p and q.

• This is because the differencing changes the data on which the likelihood is 
computed, making the AIC values between models with different orders of 
differencing not comparable.



Modelling Procedure



Advanced Forecasting Methods



Advanced Forecasting Methods

• Machine Learning models in form of (auto-)regressors can be used for 
time series forecasting.

• Decision Tree Regressors

• (Deep) Neural Networks Regressors
• Convolutional Neural Networks

• Recurrent Neural Networks

• Ensemble Regressors
• Bagging

• Bootstrapping

• Random Forest Regressors
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