
Image similarities and
clustering

Anna Monreale and Francesca Naretto

Computer Science Department

Introduction to Data Mining, 2nd Edition

Chapter 1 & Data Exploration (Additional Resources)

Clustering analysis

Objective: finding groups of objects such that in a group

the objects are similar, while they are different w.r.t. the

objects in another group.

Hence, to have a clustering we need to understand

what we mean for similarity among images.

Clustering characteristics

They exploit a proximity or density measure.

How to evaluate the proximity/similarity
among images?

Also in this case, the image characteristics may
affect proximity measures, such as strange
distributions of the data, different light
conditions, different position of the object in
the image.

How to evaluate similarity in images?

We want a number that tells us how similar two images are:

• Feature based approaches

• Frequency based approaches

• Structural similarity

• Histogram based similarity

• Deep learning based approaches

How to evaluate similarity in images?

Simplest way: Euclidean Distance.

As for tabular data, when we are working with numbers we can

compare them using Euclidean Distance.

In particular, with images, we can compare them by calculating

the distance pixel by pixel.

Drawbacks:

Affected by changing of lights, positions etc.

Cosine Similarity

This metric operates on the image vectors. Given two image

vectors, representing the pixel values of images.

To compare the two vectors, we measure the cosine of the angle

between the vectors.

Cosine Similarity
The formula for evaluating the cosine similarity is:

The dot product of the 2 vectors, while the denominator is the

dot product of the size of the 2 vectors

Close to 1 Close to -1

Mean Squared Error (MSE)

This metric measures the average squared difference between

the pixel values of two images.

Simple, widely used for its simplicity, easy to apply, reasonably

good results and fast.

How to evaluate similarity in images?

Feature descriptors

Histogram based approaches

These methods capture the distribution of pixels in an image.

By comparing histograms, you can measure similarity.

PROS: it is not affected by images of different dimensions.

Histogram based approaches

These methods capture the distribution of pixels in an image.

By comparing histograms, you can measure similarity.

PROS: it is not affected by images of different dimensions.

To compare the similarity, we can then use:

• Histogram Intersection (the larger the value, greater is the

similarity)

• Histogram correlation (greater correlation means greater

similarity)

Histogram of oriented gradients (HOG)

It computes the histogram of gradients which are
used as the features of an image. Hence, we obtain a
feature descriptor in the end.

How to calculate the gradients for images?

You can find the full description on this paper:

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Histogram of oriented gradients (HOG)

1. Pre-process the data
1. We need images with the width to height

ratio to 1:2. (Later on we split the image)
At this point, we can calculate the gradients on
the x and y directions. Let’s assume we calculate
it only for a portion of the image at each time.

You can find the full description on this paper:

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Histogram of oriented gradients (HOG)

At this point, we can calculate the gradients on the x and
y directions. Let’s assume we calculate it only for a
portion of the image at each time.

Our image:

Histogram of oriented gradients (HOG)

For the pixel 85:
Gradient in x direction (change in x direction): 𝐺𝑥 = 89-78 = 11
Gradient in y direction (change in y direction): 𝐺𝑦 = 68-56 = 8

Histogram of oriented gradients (HOG)

• We need to repeat the computation considering all the
pixels (kernel again!)

• In the end we are going to have 2 matrices, one with
the gradients in the x direction and the other with the
gradients in y direction

• General idea: the magnitude will be higher when there
is a sharp change in the intensity of the pixel values

You can find the full description on this paper:

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Histogram of oriented gradients (HOG)

Now we have computed the gradients.
How to calculate the magnitude and orientation of the gradients?

Histogram of oriented gradients (HOG)

Pitagora’s theorem!

Histogram of oriented gradients (HOG)

Pitagora’s theorem!

𝐺 = (𝐺𝑥
2+ 𝐺𝑦

2)

tan 𝜙 =
𝐺𝑦

𝐺𝑥

𝜙 = atan(
𝐺𝑦

𝐺𝑥
)

Histogram of oriented gradients (HOG)

For each pixel we calculate these two values to obtain magnitude and
orientation.

𝐺 = (𝐺𝑥
2+ 𝐺𝑦

2)

tan 𝜙 =
𝐺𝑦

𝐺𝑥

𝜙 = atan(
𝐺𝑦

𝐺𝑥
)

Histogram of oriented gradients (HOG)

Now that we have computed the gradients, their orientations and
magnitudes, we can create the histogram.

Simple method:

Histogram of oriented gradients (HOG)

Now that we have computed the gradients, their orientations and
magnitudes, we can create the histogram.

‘Maybe better’ method:

Histogram of oriented gradients (HOG)

Now that we have computed the gradients, their orientations and
magnitudes, we can create the histogram.

Best** method:

Histogram of oriented gradients (HOG)

• This method is usually fast and accurate, without
exploiting any machine learning based
approaches.

• It exploits sliding window to compute the
histogram for sub-spaces of the image.

• It works well both for gray scale images and color
ones

• It does not need a lot of pre-processing since it
can handle changes in lights and small noise

You can find the full description on this paper:

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Histogram of oriented gradients (HOG)

1. It takes as input the original image

2. Divides it in block of equal size

3. Each block is divided again into cells of equal size

4. At this point, for each cell a histogram is generated

5. Then, a block normalization (like L2 norm) is applied to

overcome small problems like changing of lights

Structural similarity Index (SSIM)

This method was first introduced to compare two versions of the

same image with the aim of evaluating the quality of the image

after compression or pre-processing techniques. Hence you can

compare the original image vs. its modified version.

It can be used also for evaluating the similarity between 2

different images.

It considers luminance, contrasts and structure of the images.

Structural similarity Index (SSIM)

1. It is a sliding window technique that calculates mean,

variance and covariance for each window.

2. It then computes a single value, which represent the

Structural Similarity between the 2 images

3. -1 means the two images are different, 1 they are identical.

NB: it is affected by different dimensions of the images. Pre-

processing, like background subtraction or noise removing is

fundamental for it to work as a similarity between images.

Scale Invariant Feature Transform (SIFT)

It is a feature based approach that identifies key points in the

image and then compares them to detect similarities. The output

is a feature descriptor again.

1. Constructing a Scale Space

2. Keypoint Localization

3. Orientation Assignment

4. Keypoint descriptor

Scale Invariant Feature Transform (SIFT)

It is a feature based approach that identifies key points in the

image and then compares them to detect similarities.

1. Constructing a Scale Space: Objective: make sure that the

keypoint are not scale-dependent.

1. Create a collection of images from the original one, with

different scales

2. Apply Gaussian Blur to all of them by different amounts

3. Difference of gaussian kernel: calculate the difference of

Gaussian Blurs of an image with different scales

Scale Invariant Feature Transform (SIFT)

Difference of Gaussian
kernels

Scale Invariant Feature Transform (SIFT)

It is a feature based approach that identifies key points in the

image and then compares them to detect similarities.

1. Constructing a Scale Space

2. Keypoint Localization

1. Find local minima and maxima by comparing each pixel

with its neighbors and the ones in the same space but in

the close images on different scales.

2. Drop low contrast points or edge points

Scale Invariant Feature Transform (SIFT)

It is a feature based approach that identifies key points in the

image and then compares them to detect similarities.

1. Constructing a Scale Space

2. Keypoint Localization

3. Orientation Assignment: to make the keypoint invariant to

rotation

1. Calculate magnitude and orientation

2. Create an histogram and keep only the points above 80%

in the peaks.

Scale Invariant Feature Transform (SIFT)

It is a feature based approach that identifies key points in the

image and then compares them to detect similarities.

1. Constructing a Scale Space

2. Keypoint Localization

3. Orientation Assignment

4. Keypoint descriptor: generate a fingerprint for each keypoint.

Scale Invariant Feature Transform (SIFT)

1. It is a feature based approach.

2. It is not affected by the size or the orientation of the image

3. It is scale invariant, rotation invariant and robust

4. It looks at the edges, key points, corners and so on. After

having identified the most salient points of the image, they are

compared to evaluate the similarity.

Template Matching

Given the template of the object we are interested in, we can

compare the template with the image under analysis via sliding.

We slide the template over the image and we calculate how

similar the sub-image and the template are.

We can use various metrics to evaluate the similarity, such as

correlation or sum of square differences.

Fourier Transformations

A transformation is a mapping between domains.

We represent the same information in 2 different domains.

In our case, we want to transform our information into

something that is easier to work with.

In this case, it is a mapping between a signal in the time domain

(𝑓(𝑡)) and the frequency domain F 𝑣 , where f is the function

we are looking at, t is the time and F is the frequency.

Fourier Transformations

Fourier Transform

approximates the

signal using different

sine and cosine waves,

combined linearly.

Fourier Transformations

Fourier Transformations

Fourier Transform

𝑓 𝑡 =
1

2
𝑎0 + ෍

𝑘=1

∞

(𝑎𝑘𝑐𝑜𝑠2𝜋𝑘𝑡 + 𝑏𝑘𝑠𝑖𝑛2𝜋𝑘𝑡)

Given any periodic function in time, we can decompose it
into a sum of a constant and a series of sines and cosines,
with their individual frequencies. Once you have the signal
represented in the frequency domain, you can go back to

your original signal without loss!

Fourier Transform

𝑓 𝑡 =
1

2
𝑎0 + ෍

𝑘=1

∞

(𝑎𝑘𝑐𝑜𝑠2𝜋𝑘𝑡 + 𝑏𝑘𝑠𝑖𝑛2𝜋𝑘𝑡)

Fourier Transform

𝑓 𝑡 =
1

2
𝑎0 + ෍

𝑘=1

∞

(𝑎𝑘𝑐𝑜𝑠2𝜋𝑘𝑡 + 𝑏𝑘𝑠𝑖𝑛2𝜋𝑘𝑡)

How to calculate these coefficients at each particular
frequency?

Fourier Transform

X 𝐹 = ׬
−∞

∞
𝑥(𝑡)𝑒−𝑗2𝜋𝐹𝑡𝑑𝑡

function

Analysing function: sinusoids

Xa 𝐹 = ׬
−∞

∞
𝑥 𝑡 𝑐𝑜𝑠2𝜋𝑓𝑡𝑑𝑡 Xb 𝐹 = ׬

−∞

∞
𝑥 𝑡 𝑠𝑖𝑛2𝜋𝑓𝑡 𝑑𝑡

In this way we have 2 real coefficients per frequency

General idea: It is a
complex number cause it
holds all the information
about the different
sinusoids, such as phase,
amplitude, etc.
But we have one complex
coefficient per
frequency!

Fourier Transform

In discrete domain:

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛 ∗ 𝑒−
𝑗2𝜋𝑘𝑛

𝑁

Fourier Transform: expansion

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛 ∗ 𝑒−
𝑗2𝜋𝑘𝑛

𝑁

𝑋𝑘 = 𝑥0𝑒−𝑏0𝑗 + 𝑥1𝑒−𝑏1𝑗 + 𝑥2𝑒−𝑏2𝑗 + ⋯ + 𝑥𝑛𝑒−𝑏𝑛𝑗

= 𝑏𝑛

K-th frequency bin n-th sample

𝑒𝑗𝑥 = cos 𝑥 + j sin 𝑥

𝑋𝑘 = 𝑥0[𝑐𝑜𝑠(−𝑏0) + 𝑗𝑠𝑖𝑛(−𝑏0)] + ⋯ + 𝑥𝑛[𝑐𝑜𝑠(−𝑏𝑛) + 𝑗𝑠𝑖𝑛(−𝑏𝑛)]

𝑋𝑘 = 𝐴𝑘 + 𝐵𝑘𝑗

Euler’s formula:

Fourier Transform

𝑋𝑘 = 𝐴𝑘 + 𝐵𝑘𝑗

(𝐴𝑘, 𝐵𝑘)

𝐵𝑘

𝐴𝑘

Real

Imag(j)

Fourier Transform

𝑋𝑘 = 𝐴𝑘 + 𝐵𝑘𝑗

(𝐴𝑘, 𝐵𝑘)

Real

Imag(j)

Magnitude

𝜃

𝑀𝑎𝑔 = 𝐴𝑘
2 + 𝐵𝑘

2

𝜃 = 𝑡𝑎𝑛−1
𝐵𝑘

𝐴𝑘

Fourier Transform

𝑋𝑘 = 𝐴𝑘 + 𝐵𝑘𝑗

Magnitude

𝜃

Fourier Transform: example

time

Sine wave of 1Hz
Amplitude of 1
Sampling frequency 8 Hz
8 samples

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛 ∗ 𝑒−
𝑗2𝜋𝑘𝑛

𝑁

Fourier Transform example

time

Sine wave of 1Hz
Amplitude of 1
Sampling frequency 8 Hz
8 samples

0

0.70

1

0.70

0

-1-0.70 -0.70

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛 ∗ 𝑒−
𝑗2𝜋𝑘𝑛

𝑁

Fourier Transform example
Sine wave of 1Hz
Amplitude of 1
Sampling frequency 8 Hz
8 samples

𝑥0 = 0

𝑥1 = 0.70

𝑥2 = 1

𝑥3 = 0.70

𝑥4 = 0

𝑥5 = −0.70

𝑥6 = −1

𝑥7 = −0.70

𝑋𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛 ∗ 𝑒−
𝑗2𝜋𝑘𝑛

𝑁

𝑋0 = σ𝑛=0
𝑁−1 𝑥𝑛 ∗ 𝑒−

𝑗2𝜋0𝑛

𝑁 =0+0.70+…-0.70 = 0

𝑋1 = σ𝑛=0
𝑁−1 𝑥𝑛 ∗ 𝑒−

𝑗2𝜋1𝑛

𝑁 = 0 ∗ 𝑒−
𝑗2𝜋(1)(0)

8 +

0.70 ∗ 𝑒−
𝑗2𝜋 1 1

8 + 1 ∗ 𝑒−
𝑗2𝜋1 1 2

8 ± ⋯

𝑋1 = 0 + 0.70 cos −
𝜋

4
+ 𝑗𝑠𝑖𝑛(−

𝜋

4
)] + 1[cos −

𝜋

2
+ 𝑗𝑠𝑖𝑛(−

𝜋

2
)] + ⋯ .

Fourier Transform example
Sine wave of 1Hz
Amplitude of 1
Sampling frequency 8 Hz
8 samples

𝑋0 = 0

𝑋1 = 0 − 4j

𝑋2 = 0

𝑋3 = 0

𝑋4 = 0

𝑋5 = 0

𝑋6 = 0

𝑋7 = 0 + 4j

Frequency

Magnitude (Pitagora’s theorem)

𝑀𝑎𝑔 = 𝐴𝑘
2 + 𝐵𝑘

2 = 02 + (−4)2 = 4

4

Fourier Transform and the Nyquist limit

Imagine you are trying to capture the details of a wave.

You need to take a lot of snapshots of your wave, otherwise
you are going to loose important details of your wave, ending
up with an inaccurate description of your wave.

If you now consider your signal, if you do not have enough
information, you may end up having a distorted version of
your signal, which is called aliasing.

The Nyquist limit ensures you are taking enough information
of your signal so that you do not end up having an aliasing.

The rule is: sample at least twice as fast as the highest
frequency in the signal.

Fourier Transform example
Sine wave of 1Hz
Amplitude of 1
Sampling frequency 8 Hz
8 samples

𝑋0 = 0

𝑋1 = 0 − 4j

𝑋2 = 0

𝑋3 = 0

Frequency

Magnitude

8

Nyquist limit: maximum representation is
sampling frequency /2.
It is impossible to represent anything
above the Nyquist limit.
In our case is 4.
For this reason we sample twice the
frequency, obtaining 8. Now we divided it
for 8 (number of samples) and we obtain 1,
which is actually the amplitude we wanted

Fourier Transform

Fourier Transform and convolution

Convolution of 2 functions f(x) and h(x) is:

𝑔 𝑥 = 𝑓 𝑥 ∗ ℎ 𝑥 = න
−∞

∞

𝑓 𝜏 ℎ 𝑥 − 𝜏 𝑑𝜏

Fourier transform of g(x):

𝐺 𝑢 = න
−∞

∞

𝑔 𝑥 𝑒−𝑖2𝜋𝑢𝑥𝑑𝑥

𝐺 𝑢 = න
−∞

∞

න
−∞

∞

𝑓(𝜏) ℎ 𝑥 − 𝜏 𝑒−𝑖2𝜋𝑢𝑥𝑑𝜏𝑑𝑥

𝐺 𝑢 = ׬
−∞

∞
𝑓(𝜏) 𝑒−𝑖2𝜋𝑢𝑥𝑑𝜏+ ׬

−∞

∞
ℎ 𝑥 − 𝜏 𝑒−𝑖2𝜋𝑢𝑥 𝑑𝑥

F(u) H(u)

Fourier Transform and convolution

The convolution in the spatial domain corresponds to the
multiplication in the frequency domain.

At the same time, if you take the product of 2 functions in
the spatial domain, it is equivalent to the convolution of the
2 functions in the frequency domain.

𝑔 𝑥 = 𝑓 𝑥 ∗ ℎ 𝑥 → 𝐺 𝑢 = 𝐹 𝑢 𝐻 𝑢
𝑔 𝑥 = 𝑓 𝑥 ℎ 𝑥 → 𝐺 𝑢 = 𝐹 𝑢 ∗ 𝐻(𝑢)

Convolution using the Fourier Transform

There are very fast algorithms to find the Fourier transform
(and its inverse) than the convolution in the spatial domain.
Hence, if you have huge images, or huge kernels, it is faster!

You can use this approach to compare by similarity the image
in the frequency domain, but also for the filtering we saw in
image pre-processing.

𝑔 𝑥 = 𝑓 𝑥 ∗ ℎ 𝑥

𝐺 𝑢 = 𝐹 𝑢 𝑥 𝐻(𝑢)

Clustering

Now that we have seen a little bit of distance/similarity
metrics, we can exploit them for the clustering.

Clustering: k-means

We can apply k-means also to images, with various
settings:

1. Images and Euclidean distance

2. A feature descriptor of the images and Euclidean
distance (based on SSIM, SIFT…)

Clustering: hierarchical

Also in this case, we can apply the hierarchical approach
looking for image clusters, but again we need to pay
attention to the notion of distance and the selection of
the image representation.

Clustering: DB-scan

We can use DB-scan also for images.

Which distance metric can we use?

1. Euclidean

2. Cosine

Also in this case, you can compare the images and check
their distance, or you can compare the feature descriptors.

Clustering: drawbacks

In theory we can apply all of the techniques we saw so far also to
images.

But, these algorithms may be quite slow when working with huge
dimensions, like the ones of the images.

For this reason is extremely important to select carefully the
feature descriptors for our images:

1. A poor one will not represent well our image

2. A big representation will make the computation impossible

3. Simply using the entire image requires high computational
costs, as well as difficulties in handling similarities

	Introduction Big Data
	Slide 1: Image similarities and clustering
	Slide 2: Clustering analysis

	Data & Attributes
	Slide 3: Clustering characteristics
	Slide 4: How to evaluate similarity in images?
	Slide 5: How to evaluate similarity in images?
	Slide 6: Cosine Similarity
	Slide 7: Cosine Similarity
	Slide 8: Mean Squared Error (MSE)
	Slide 9: How to evaluate similarity in images?
	Slide 10: Histogram based approaches
	Slide 11: Histogram based approaches
	Slide 12: Histogram of oriented gradients (HOG)
	Slide 13: Histogram of oriented gradients (HOG)
	Slide 14: Histogram of oriented gradients (HOG)
	Slide 15: Histogram of oriented gradients (HOG)
	Slide 16: Histogram of oriented gradients (HOG)
	Slide 17: Histogram of oriented gradients (HOG)
	Slide 18: Histogram of oriented gradients (HOG)
	Slide 19: Histogram of oriented gradients (HOG)
	Slide 20: Histogram of oriented gradients (HOG)
	Slide 21: Histogram of oriented gradients (HOG)
	Slide 22: Histogram of oriented gradients (HOG)
	Slide 23: Histogram of oriented gradients (HOG)
	Slide 24: Histogram of oriented gradients (HOG)
	Slide 25: Histogram of oriented gradients (HOG)
	Slide 26: Structural similarity Index (SSIM)
	Slide 27: Structural similarity Index (SSIM)
	Slide 28: Scale Invariant Feature Transform (SIFT)
	Slide 29: Scale Invariant Feature Transform (SIFT)
	Slide 30: Scale Invariant Feature Transform (SIFT)
	Slide 31: Scale Invariant Feature Transform (SIFT)
	Slide 32: Scale Invariant Feature Transform (SIFT)
	Slide 33: Scale Invariant Feature Transform (SIFT)
	Slide 34: Scale Invariant Feature Transform (SIFT)
	Slide 35: Template Matching
	Slide 36: Fourier Transformations
	Slide 37: Fourier Transformations
	Slide 38: Fourier Transformations
	Slide 39: Fourier Transformations
	Slide 41: Fourier Transform
	Slide 42: Fourier Transform
	Slide 43: Fourier Transform
	Slide 44: Fourier Transform
	Slide 45: Fourier Transform
	Slide 46: Fourier Transform: expansion
	Slide 47: Fourier Transform
	Slide 48: Fourier Transform
	Slide 49: Fourier Transform
	Slide 50: Fourier Transform: example
	Slide 51: Fourier Transform example
	Slide 52: Fourier Transform example
	Slide 53: Fourier Transform example
	Slide 54: Fourier Transform and the Nyquist limit
	Slide 55: Fourier Transform example
	Slide 56: Fourier Transform
	Slide 57: Fourier Transform and convolution
	Slide 58: Fourier Transform and convolution
	Slide 59: Convolution using the Fourier Transform
	Slide 60: Clustering
	Slide 61: Clustering: k-means
	Slide 62: Clustering: hierarchical
	Slide 63: Clustering: DB-scan
	Slide 64: Clustering: drawbacks

