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Motivation

* Relationship between attributes and class lables may
not be deterministic but probabilistic

e Reasons:
— Noise in the data

— Confounding factors affecting the classification and not in
the data

* Bayesian Classifier exploit the Bayes Theorem that
combines prior knowledge on the class labels with
knowledge derivable from data

UNIVERSITA DI PI1SA




Bayes Classifier

* A probabilistic framework for solving classification problems.

* Let P be a probability function that assigns a number between 0 and 1 to
events.

e X =xan events is happening - data tuple

 Goal: we are looking for the probability that tuple X belongs to class C, given
that we know the attribute description of X.

* P(X=x)is the probability that events X = x --- Prior probability of X

* Joint Probability P(X=x,Y =)

* Conditional Probability P(Y=y | X=x)

e Relationship: P(X,Y) = P(Y|X) P(X) = P(X]Y) P(Y)

* Bayes Theorem: P(Y|X) = P(X|Y)P(Y) / P(X) --- Posterior Probability of Y
* Another Useful Property: P(X =x) = P(X=x, Y=0) + P(X=x, Y=1)
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Bayes Theorem

* Consider a football game. Team 0 wins 65% of the time, Team
1 the remaining 35%. Among the game won by Team 1, 75%
of them are won playing at home. Among the games won by
Team 0, 30% of them are won at Team 1’s field.

* If Team 1 is hosting the next match, which team will most
likely win?

e Team O wins: P(Y=0)=0.65

e Team 1wins:P(Y=1)=0.35

 Team 1 hosted the match, Team 1 wins: P(X=1|Y=1)=0.75
 Team 1 hosted the match Team 0 wins: P(X=1|Y =0) =0.30
* Objective P(Y=1|X=1)

UNIVERSITA DI PI1SA



Bayes Theorem

Team 1 hosted the Team 1 wins | | Team 1 hosted the match

match, Team 1 wins /

« P(Y=1|X=1)=P(X=1|Y=1)P(Y=1)/P(X=1)=
=0.75x0.35/(P(X=1,Y=1)+P(X=1,Y =0))
=0.75x0.35/ (P(X = 1|Y = 1)P(Y=1) + P(X = 1|Y = 0)P(Y=0))
= 0.75x 0.35 / (0.75 x 0.35 + 0.30 x 0.65)
= 0.5738

e Therefore Team 1 has a better chance to win the match
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Bayes Theorem for Classification

« X denotes the attribute sets, X = {X|, X,, ... X }
* Y denotes the class variable
* We treat the relationship probabilistically using

P(Y[X)
Likelihood propggobrmty
\ /
P(X|Y)p(y
. P([YlX) — ( Il()z)( :
Posterior Evidence
Probability
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Bayes Theorem for Classification

e Learn the posterior P(Y | X) for every combination of X
andY.

* By knowing these probabilities, a test record X’ can be
classified by finding the class Y’ that maximizes the
posterior probability P(Y’ | X’).

* Thisis equivalent of choosing the value of Y’ that
maximizes P(X"|Y’)P(Y’).

e How to estimate it?
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Naive Bayes Classifier

* |t estimates the class-conditional probability by
assuming that the attributes are conditionally

independent given the class label .
* The conditional independence is stated as:

PXIY =y) =TIE, P(X;|Y = y)

where each attribute set X = {X,, X,, ... X}
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Conditional Independence

* Given three variables, X;, X, we can say that Y is conditionally
independent from X, given X, if the following condition holds:

P(Y | Xy, X;) = P(Y[X,)

* With the conditional independence assumption, instead of
computing the class-conditional probability for every combination
of X we only need to estimate the conditional probability of each X;
given Y.

* Thus, to classify a record the naive Bayes classifier computes the
posterior for each class Y and takes the maximum class as result

d
rviv) =P | | PexY = y) /P00
=1 v\

How to estimate ?
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How to Estimate Probability From Data

Class P(Y) =N,/ N
* N,number of records with outcome y
* N number of records

e Categorical attributes
P(X=x]Y=y)=N,, /N,

* N, records with value x and outcome y
 P(Evade =Yes)=3/10

e P(Marital Status = Single|Yes) = 2/3
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Tid Refund Marital

Status

Taxable
Income

Evade

—

o 0O ~N o O B~ W N

—
o

Yes
No
No
Yes
No
No
Yes
No
No
No

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married

Single

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

No
No
No
No
Yes
No
No

Yes




How to Estimate Probability From Data

Continuous attributes:

* Discretize the range into bins
— Continuous vs nominal
— Estimation: count records with class y and falling in the
range
* Probability density estimation:
— Assume attribute follows a normal distribution

— Use data to estimate parameters of distribution (e.g.,
mean and standard deviation)

— Once probability distribution is known, can use it to
estimate the conditional probability P(X|y)
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How to Estimate Probability From Data

Tid Refund Marital Taxable

* Normal distribution T Lo EECL
2 1 Yes Single 125K No
(x; = Bij) _
— > 2 No Married 100K No
20%;
PX.=x, | Y=y)= ij 3 |No sSingle  [70K No
v GU 4 |Yes Married |[120K No
5 No Divorced |95K Yes
. 6 N Married |60K N
1;; can be estimated as the mean of X; ° - °
7 Yes Divorced |220K No
for the records that belongstoclassy; | |0 lsingle [ssk  |ves
* Similarly, o;; as the standard deviation. |9 |No  |Maried |75k |No
10 [No Single 90K Yes

P(Income = 120|No) = 0.0072
— mean =110
— std dev =54.54

UNIVERSITA DI PisA




M-estimate of Conditional Probability

* |f one of the conditional probability is zero, then the entire expression
becomes zero.

* For example, given X = {Refund = Yes, Divorced, Income = 120k}, if
P(Divorced|No) is zero instead of 1/7, then

— P(X|No) =3/7 x0x0.00072 =0
— P(X|Yes)=0x1/3x10°=0

Nyy+mp Nyy+1 .

 M-estimate P(X|Y) = (if P(X]Y) =

J’ y | |
* misaparameter,pisa user-speC|f|ed parameter (e.g. probability of
observing x; among records with class y;.

is Laplacian estimation)

* Inthe example withm=3 and p=1/m=1/3 (i.e., Laplacian estimation)
we have

P(Married |Yes) = (0+3x1/3)/(3+3) =1/6
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Naive Bayes Classifier

* Robust to isolated noise points

* Handle missing values by ignoring the instance
during probability estimate calculations

e Robust to irrelevant attributes

* Independence assumption may not hold for some

attributes

— Use other techniques such as Bayesian Belief Networks
(BBN)
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EXERCISE - NBC
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Play-tennis example. estimating P(x. | C)

Outlook Temperature Humidity Windy Class P(Sllllllylp) = P(Sllllllﬂll) =
sunny hot high false N
sunny  hot high  true N P(overcast|p) = P(overcast|n) =
overcast hot high false P
rain mild high false P P(rainlp) = P(rainln) =
rain cool normal false P
rain cool normal true N
overcast cool normal true P
sunny mild high false N
sunny cool normal false P P(hOtlp) = P(hOtlIl) =
rain mild normal false P . N
sunny mild normal true P P(mlld|P) = P(m11d|n) =
overcast mild high true P
overcast hot normal false P P(C()Ollp) = P(COOllll) =
P(high|p) = P(high|n) =
P(p) =914 P(normal|p) = P(normaljn) =
P() = 5/14 windy
P(true|p) = P(true|n) =
P(false|p) = P(false|n) =




Play-tennis example. estimating P(x. | C)

Outlook Temperature Humidity Windy Class

sunny hot high false N
sunny hot high true N
overcast hot high false P
rain mild high false P
rain cool normal false P
rain cool normal true N
overcast cool normal true P
sunny mild high false N
sunny cool normal false P
rain mild normal false P
sunny mild normal true P
overcast mild high true P
overcast hot normal false P
rain mild high true N

P(p) = 9/14

P(n) = 5/14

P(sunny|p) =2/9

P(sunny|n) = 3/5

P(overcast|p) =4/9

P(overcastjn) =0

P(rain|p) = 3/9

P(rain|n) = 2/5

P(hot|p) = 2/9

P(hot|n) = 2/5

P(mild|p) = 4/9

P(mild|n) = 2/5

P(cool|p) =3/9

P(cooljn) =1/5

P(high|p) = 3/9

P(high|n) = 4/5

P(normal|p) = 6/9

P(normaljn) = 1/5

P(true|p) = 3/9

P(true|n) = 3/5

P(false|p) = 6/9

P(false|n) = 2/5




Play-tennis example. estimating P(x. | C)

P(p) =9/14

P(n) = 5/14

rain

P(sunny|p) = 2/9

P(sunny|n) = 3/5

P(overcast|p) = 4/9

P(overcastjn) =10

P(rain|p) = 3/9

P(rain|n) = 2/5

P(hot|p) = 2/9

P(hot|n) = 2/5

P(mild|p) = 4/9

P(mild|n) = 2/5

P(cool|p) =3/9

P(cooln) =1/5

P(high|p) = 3/9

P(high|n) = 4/5

P(normal|p) = 6/9

P(normalln) =1/5

P(true|p) =3/9

P(true|n) =3/5

P(false|p) = 6/9

P(falsen) = 2/5

mmm

hot high false

P(X|p)-P(p) =

P(X|n)-P(n) =



Play-tennis example. estimating P(x.| C)

P(p) = 9/14

P(n) = 5/14

rain

P(sunny|p) = 2/9

P(sunny|n) = 3/5

P(overcast|p) = 4/9

P(overcastjn) =0

P(rain|p) = 3/9

P(rain|n) =2/5

P(hot|p) = 2/9

P(hot|n) = 2/5

P(mild|p) = 4/9

P(mild[n) = 2/5

P(cool|p) = 3/9

P(cooljn) = 1/5

P(high|p) = 3/9

P(high|n) = 4/5

P(normal|p) = 6/9

P(normaljn) =1/5

P(truelp) =3/9

P(truen) = 3/5

P(false|p) = 6/9

P(false|n) = 2/5

mmm

hot high false

P(X|p)-P(p) = P(rain|p)-P(hot|p)-
P(high|p)-P(false|p)-P(p) = 3/9 - 2/9 -
3/9 - 6/9 - 9/14 = 0.010582

P(X|n)-P(n) =
P(rain|n)-P(hot|n)-P(high|n)-P(false|
n)-P(n)=2/5-2/5-4/5-2/5-5/14 =
0.018286



a) Naive Bayes (3 points)
Given the training set below, build a Naive Bayes classification model (i.e. the corresponding table of probabilities) using (i)
the normal formula and (ii) using Laplace formula. What are the main effects of Laplace on the models?

A | B | class
no green N
no red e
yes green N
no red N
no red Y
no green D
yes green N
Answer:
Normal Y N Y N
‘ 3 4 0.43 0.57
AlY AN AlY A|N
yes 0 2yes f 0.00 0.50
no 3 2no ‘ 1.00 0.50
B|Y B[N | B|Y BIN
green 1 3green | 0.33 0.75
red 2 1red 0.67 0.25
Laplace [Y N Y N
_ 3 4 0.43 0.57
AlY AIN , AlY AN
yes 0 2yes ' 0.20 0.50
no , 3 2no 0.80 0.50
B|Y B[N _ B|Y B|N
green 1 3 green ' 0.40 0.67
red 2 1red 0.60 0.33
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