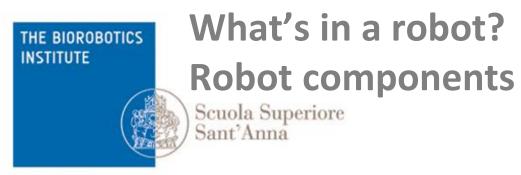
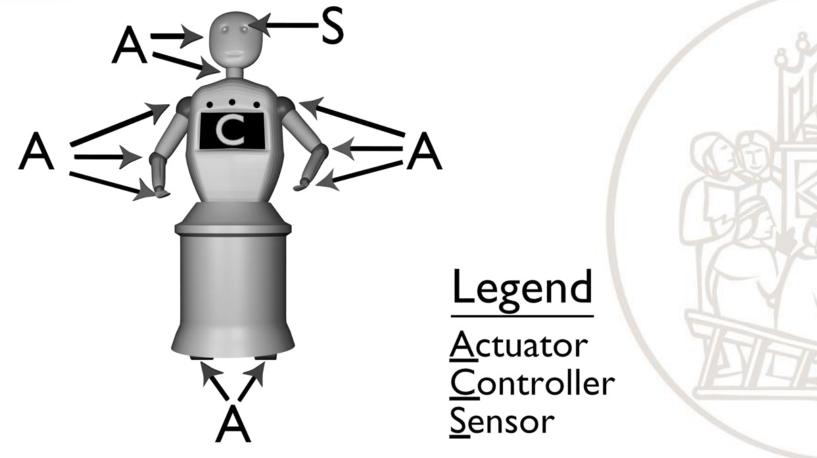
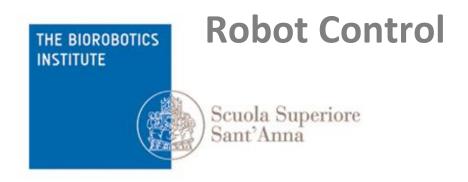


A robot is an autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals





Maja J Mataric, The Robotics Primer, The MIT Press, 2007



- Control of one joint motion:
 - PID controller
- Control of the manipulator motion:
 - Trajectory planning
 - Motion control in joint space
 - Motion control in operational space

Robot kinematics and differential kinematics

Kinematics

$$x = k(q)$$
$$q = k^{-1}(x)$$

$$x = \begin{bmatrix} x \\ y \\ z \\ \varphi \\ \vartheta \end{bmatrix} \qquad q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix}$$

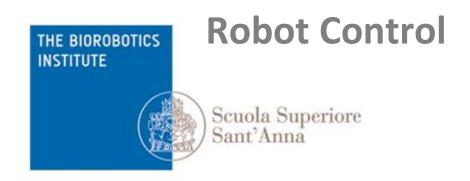
 $k(\cdot)$ = equations of direct kinematics

Differential kinematics

$$\dot{x} = J(q)\dot{q}$$
$$\dot{q} = J^{-1}(q)\dot{x}$$

Velocity space

J(q) =Jacobian matrix

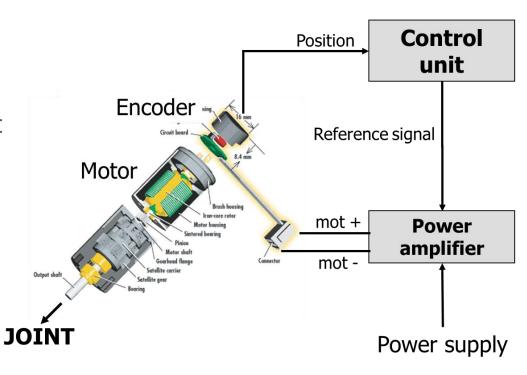


- Control of one joint motion:
 - PID controller
- Control of the manipulator motion:
 - Trajectory planning
 - Motion control in joint space
 - Motion control in operational space

Controllers

- Encoder: sensor measuring joint rotations, either as an absolute or a relative value. The measurement is given in "encoder steps"
- Reducer: mechanism reducing the motor rotations with respect to the rotations of the axis mounted on the motor (ex. 1:k reduction)
- Power amplifier: it amplifies a reference signal into a power signal for moving the joint
- Control unit: unit producing the reference signal for the motor

A control system provides a command (in voltage or current) to the actuators (motors) such that the joints reach a desired configuration



Relations between joint position and encoder position

- q: joint angular position (in degrees)
- θ : joint position in encoder steps
- k: motor reduction ratio
- R: encoder resolution (number of steps per turn)

$$q = \frac{\theta \times 360^{\circ}}{R \times k}$$

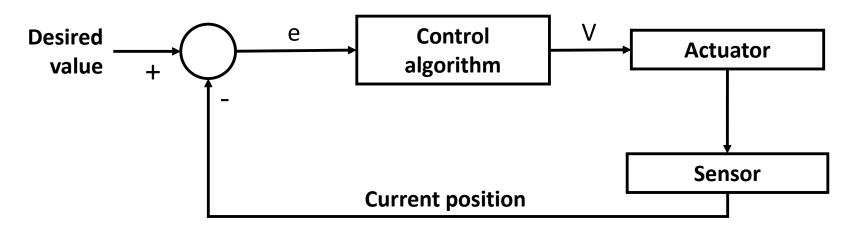
Control of one joint motion

• Objective: move the joint from the current position ${m Q}_i$ (in degrees) to the desired position ${m Q}_f$, in a time interval t:

$$q_i \Rightarrow q_f$$

Closed-loop (feedback) control

- The variable to control is measured and compared with the desired value
- The difference, or error, is processed by an algorithm
- The result of processing is the input value for the actuator

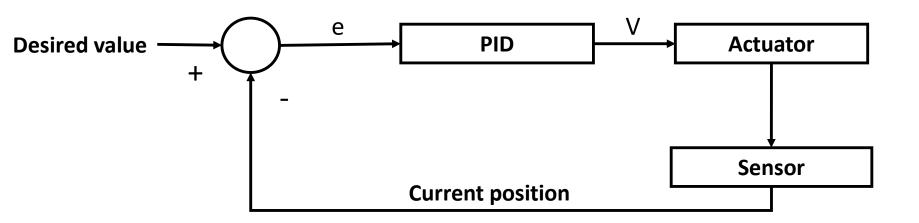


(Proportional, Integral, Derivative)

- It is a closed-loop control in which the error is processed with an algorithm including **Proportional**, **Integral and Derivative** components.
- The algorithm processes the error and provides an input to the actuator, with 3 components:
 - Proportional, producing a correction proportional to the error;
 - Integral, producing a correction given by the error integral in time;
 - Derivative, producing a correction which is a function of the error first derivative.
- Not all closed-loop control systems use a PID algorithm

PID control (Proportional, Integral, Derivative)

 In a PID control system, the error is given to the control algorithm, which calculates the derivative and integral terms and the output signal V



(Proportional, Integral, Derivative)

$$V = K_p e_q + K_d \dot{e_q} + K_i \int e_q(t) dt$$

$$e_q = q_d - q_a$$

$$\dot{e_q} = \frac{de_q}{dt}$$

 K_p is the *proportional* gain or constant

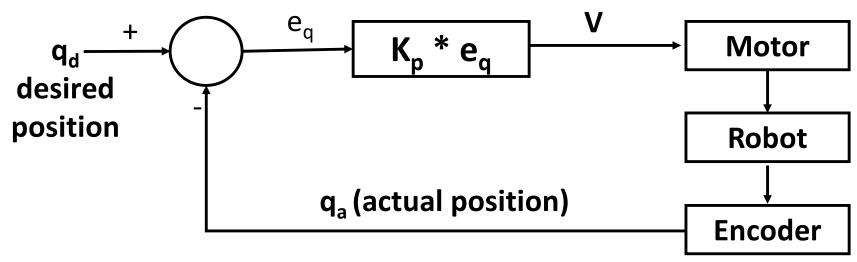
K_i is the *integral* gain or constant

 K_d is the *derivative* gain or constant

 e_q is the error, i.e. the difference between the desired position and the current (or actual) position

Proportional term

• The voltage *V* given to the motor is proportional to the difference between the actual position measured by the sensor and the desired position



Proportional term:

• The voltage *V* given to the motor is proportional to the difference between the actual position measured by the sensor and the desired position

$$V = K_p e_q$$

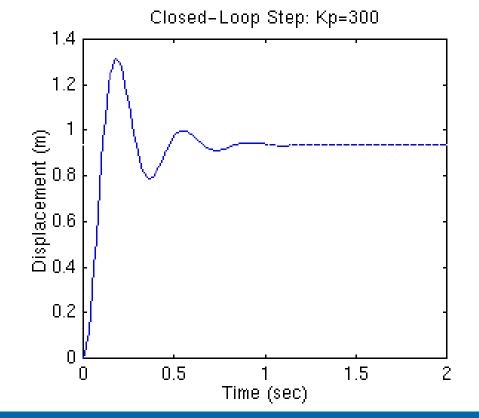
$$e_q = q_d - q_a$$

 K_P : proportional constant

Desired

position: 1

Proportional term: system behaviour



- The motor
 oscillates before
 converging
 towards the
 desired position
- The system may settle without cancelling the error

Derivative term:

$$V = K_p e_q + K_d \dot{e_q}$$

$$\dot{e_q} = rac{de_q}{dt}$$
 Error derivative in time

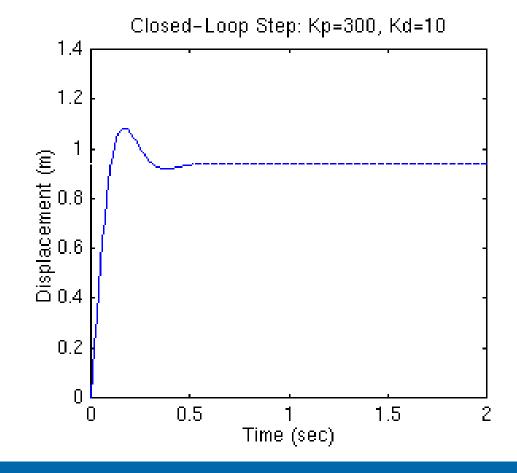
$$e_q = q_d - q_a$$

 K_d : derivative constant

Desired

position: 1

Proportional and derivative terms:



- Oscillation reductions
- Reduction of settlement time
- The system may settle without cancelling the error

Integral terms:

$$K_i \int e_q(t) dt$$
 Error integral in time

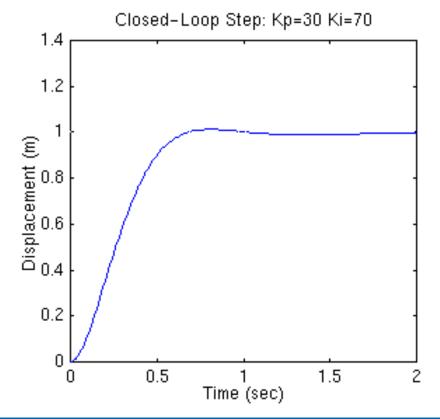
$$V = K_p e_q + K_i \int e_q(t) dt$$

$$e_q = q_d - q_a$$

 K_i : integral constant

Proportional and integral terms:

Desired position: 1



The system settles and cancels the error

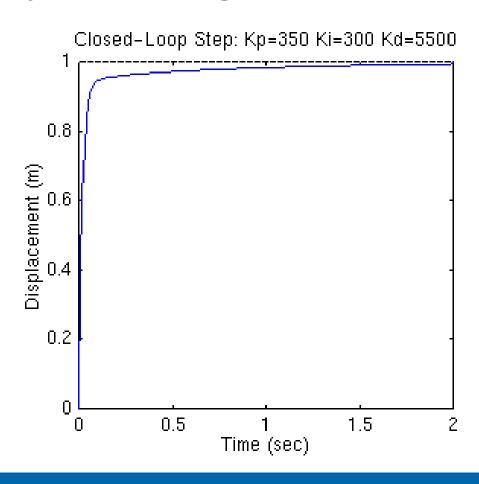
Proportional, Integral and Derivative terms:

$$V = K_p e_q + K_d \dot{e_q} + K_i \int e_q(t) dt$$

$$e_q = q_d - q_a$$

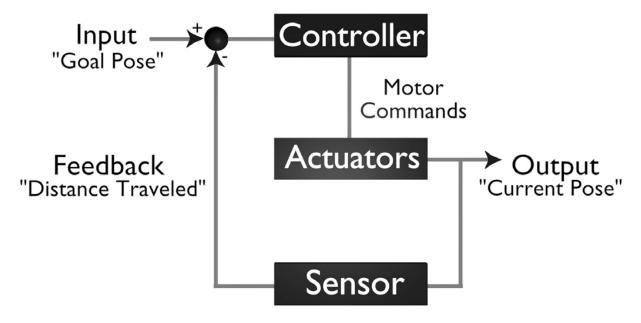
$$\dot{e_q} = \frac{de_q}{dt}$$

Proportional, Integral and Derivative terms:



 K_{p} , K_{d} , K_{i} constants are set empirically or with specific methods

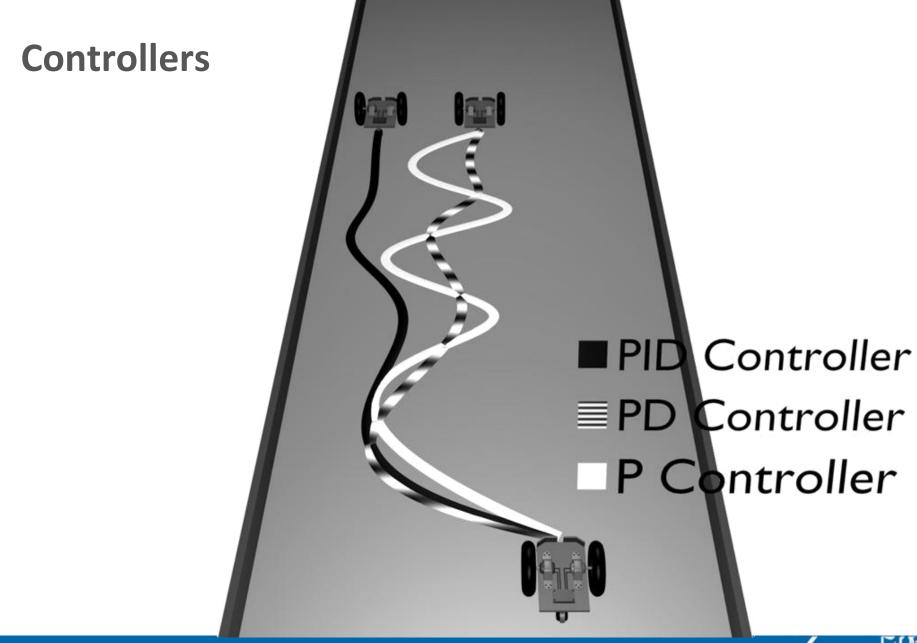
Controllers

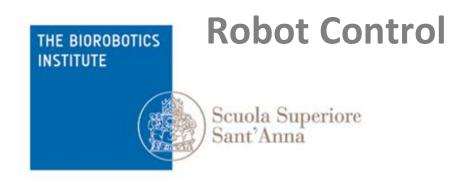


$$V = K_p e_q + K_d \dot{e}_q + K_i \int e_q(t) dt$$
$$e_q = q_d - q_a$$

$$\dot{e}_q = \frac{de_q}{dt}$$

- e_q is the error, i.e. the difference between the desired position and the current position
- K_p is the *proportional* gain or constant
- K_i is the *integral* gain or constant
- K_d is the *derivative* gain or constant

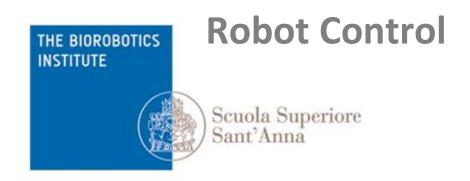




- Control of one joint motion:
 - PID controller
- Control of the manipulator motion:
 - Trajectory planning
 - Motion control in joint space
 - Motion control in operational space

Control of robot manipulator motion

- Objective: to have the robot arm moving from a starting position to a final position, both expressed in operational space coordinates
- In general, the control problem consists in finding the torques that the actuators have to give to the joints, so that the resulting arm motion follows a planned trajectory



- Control of one joint motion:
 - PID controller
- Control of the manipulator motion:
 - Trajectory planning
 - Motion control in joint space
 - Motion control in operational space

Trajectory planning

Objective: generate the reference inputs to the robot control system, which will ensure that the robot end effector will follow a desired trajectory when moving from x_{start} to x_{f}

- PATH: set of points, in joint space or operational space, that the robot has to reach in order to perform the desired movement
- TRAJECTORY: path with a specified time course (velocity and acceleration at each point)

Trajectory planning

Objective: generate the reference inputs to the robot control system, which will ensure that the robot end effector will follow a desired trajectory when moving from x_{start} to x_{f}

INPUT DATA:

- Path definition
- Path constraints
- Constraints given by the robot dynamics

OUTPUT DATA:

- **in joint space**: joint trajectories
- in operational space: end-effector trajectory

$$\{\mathbf{q}(t), \dot{\mathbf{q}}(t), \ddot{\mathbf{q}}(t)\}$$
$$\{\mathbf{p}(t), \dot{\Phi}(t), \mathbf{v}(t), \dot{\Omega}(t)\}$$

Trajectories in joint space

- Between two points: the robot manipulator must be displaced from the initial to the final joint configuration, in a given time interval t.
- In order to give the time course of motion for each joint variable, we can choose a trapezoidal velocity profile or polynomial functions:
 - Cubic polynom: it allows to set
 - the initial and final values of joint variables q_i and q_d
 - the initial and final velocities (usually null).
 - Fifth-degree polynom: it allows to set
 - the initial and final values of joint variables q_i and q_d
 - the initial and final velocities
 - the initial and final accelerations.

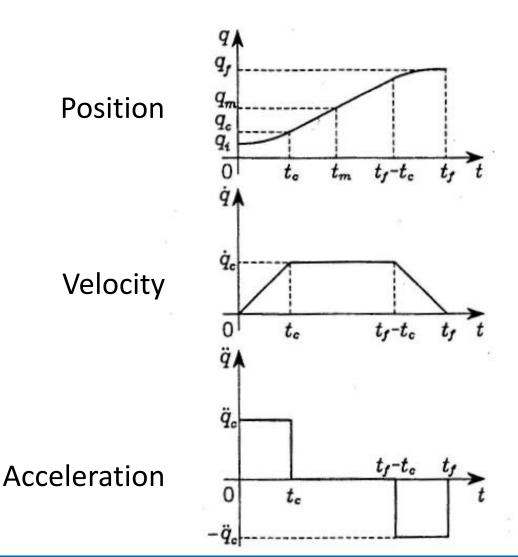
Trajectories in joint space

Trapezoidal velocity profile:

- Constant acceleration in the starting phase
- Constant cruise velocity
- Constant deceleration in the arrival phase.

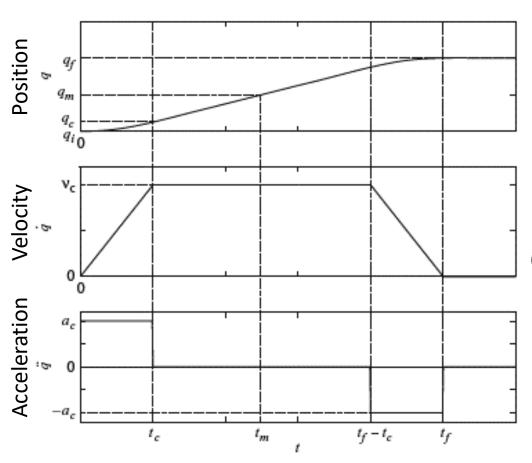
The corresponding trajectory is mixed polynomial: a linear segment connected to parabolic parts in the neighbourhood of the initial and final positions.

Trapezoidal velocity profile



Note: velocities and accelerations at the initial and final times can be different from zero

Trapezoidal velocity profile



First phase:

$$q_1(t) = q_i + \frac{1}{2}a_ct^2 \qquad 0 \le t \le t_c$$

Second phase:

$$q_2(t) = q_i + a_c t_c (t - \frac{t_c}{2})$$
 $t_c < t \le (t_f - t_c)$

Third phase:

$$q_3 = q_f - \frac{1}{2}a_c(t - t_f)^2$$
 $(t_f - t_c) < t \le t_f$

Trajectory interpolation

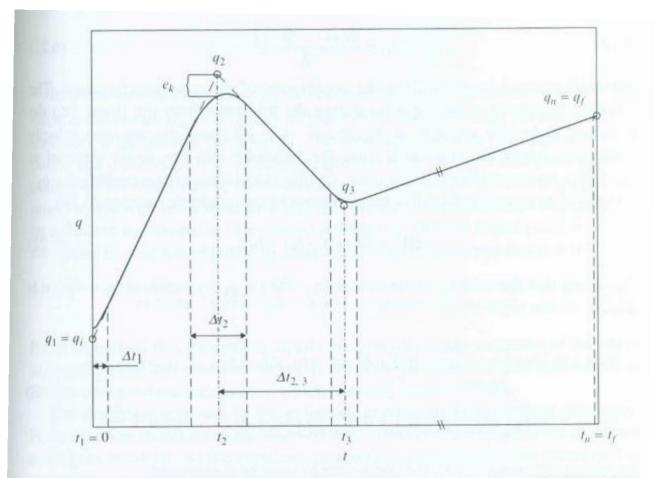
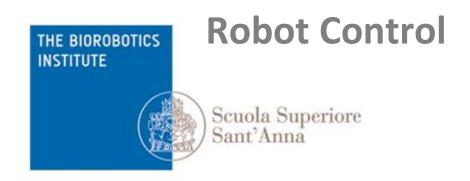


Fig. 6.2 Trajectory interpolation through n via points – linear segments with parabolic transitions are used

Trajectories in operational space

 The trajectory planning algorithm generates the time course of motion of the end effector, according to a path of geometric characteristics defined in the operational space.

• The result of planning is a sequence of n-uples: $(p(t), \Phi(t), v(t), \omega(t))$



- Control of one joint motion:
 - PID controller
- Control of the manipulator motion:
 - Trajectory planning
 - Motion control in joint space
 - Motion control in operational space

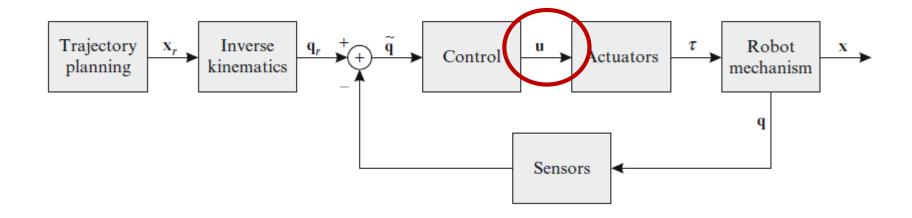
- It can be used for moving the end-effector from x_i to x_d expressed in the operational space, without taking into account the trajectory followed by the end effector
- The final position x_d is transformed in the corresponding final position in joint space q_d , by using the inverse kinematics transformation

$$q_d = K^{-1} (x_d)$$

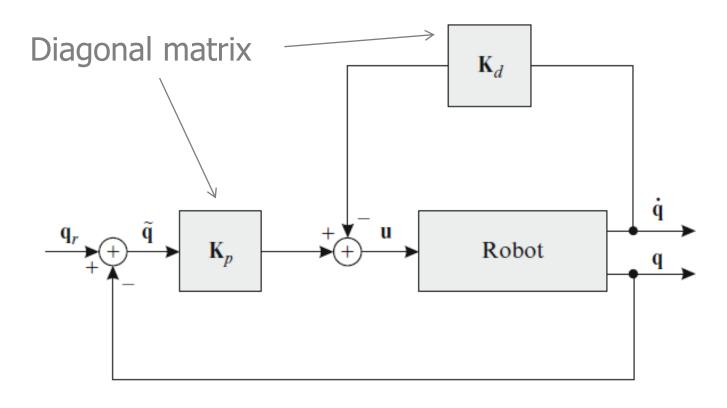
• All joints are moved from the current position \textbf{q}_i to the desired position \textbf{q}_d

 The trajectory of the end effector in the operational space is not controlled and it is not predictable, due to the nonlinear effects of direct kinematics

General scheme of robot control in joint space

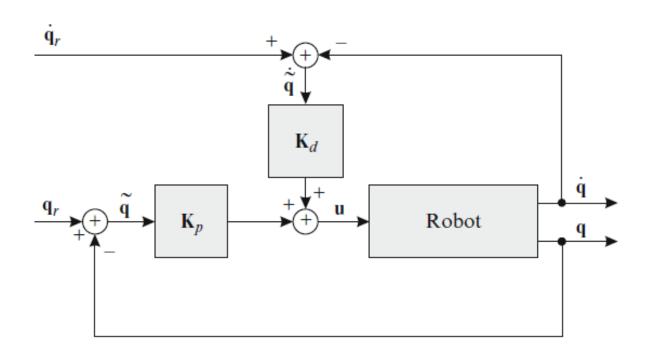


PD position control



$$\mathbf{u} = \mathbf{K}_p(\mathbf{q}_r - \mathbf{q}) - \mathbf{K}_d\dot{\mathbf{q}},$$

Motion control in joint space PD position control



$$\mathbf{u} = \mathbf{K}_p(\mathbf{q}_r - \mathbf{q}) + \mathbf{K}_d(\dot{\mathbf{q}}_r - \dot{\mathbf{q}})$$

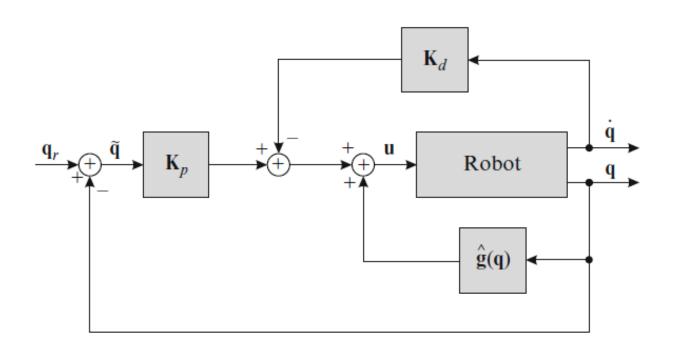
Motion control in joint space PD position control

Setting the K_p e K_d parameter matrices:

- Fast response: high K_p
- K_d sets the best damping and guarantees a fast response without oscillations
- The K parameters needs to be set independently for each joint

Motion control in joint space PD position control with gravity compensation

$$\mathbf{u} = \mathbf{K}_p(\mathbf{q}_r - \mathbf{q}) - \mathbf{K}_d\dot{\mathbf{q}} + \hat{\mathbf{g}}(\mathbf{q}).$$



Robot dynamic model

$$\tau = B(q)\ddot{q} + C(q, \dot{q})\dot{q} + Fv\dot{q} + g(q)$$

 τ = torque

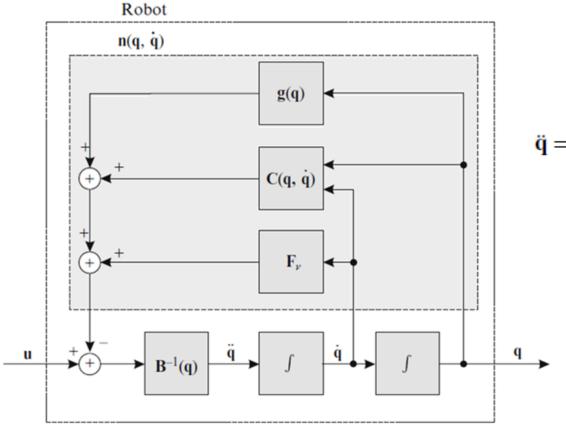
B = inertia term

C =Coriolis term

 F_{ν} = friction coefficients

g = gravity terms

Motion control in joint space based on inverse dynamics



$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_{\nu}\dot{q} + g(q) = u.$$

$$\ddot{\mathbf{q}} = B^{-1}(\mathbf{q}) \left(\mathbf{u} - \left(C(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} + F_{\nu} \dot{\mathbf{q}} + g(\mathbf{q}) \right) \right).$$

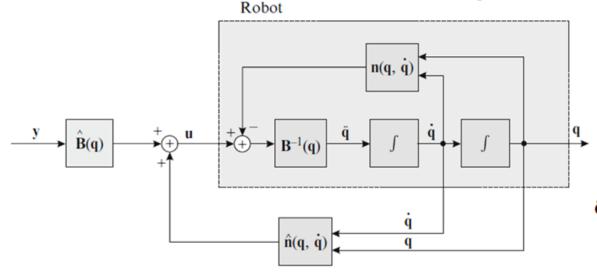
$$n(q,\dot{q}) = C(q,\dot{q})\dot{q} + F_{\nu}\dot{q} + g(q). \label{eq:n_q_def}$$

$$B(q)\ddot{q}+n(q,\dot{q})=\tau.$$

$$\ddot{\mathbf{q}} = \mathbf{B}^{-1}(\mathbf{q}) \left(\mathbf{u} - \mathbf{n}(\mathbf{q}, \dot{\mathbf{q}}) \right).$$

The direct dynamic model of a robot mechanism

based on inverse dynamics



$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_{\nu}\dot{q} + g(q) = u.$$

$$\ddot{\mathbf{q}} = \mathbf{B}^{-1}(\mathbf{q}) \left(\mathbf{u} - \left(\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} + \mathbf{F}_{\nu} \dot{\mathbf{q}} + \mathbf{g}(\mathbf{q}) \right) \right).$$

. 7.7 Linearization of the control system by implementing the inverse dynamic model

Let us assume that the robot dynamic model is known. The inertial matrix $\hat{B}(q)$ is an approximation of the real values B(q), while $\hat{n}(q,\dot{q})$ represents an approximation of $n(q,\dot{q})$ as follows

$$\hat{\boldsymbol{n}}(\boldsymbol{q},\dot{\boldsymbol{q}}) = \hat{\boldsymbol{C}}(\boldsymbol{q},\dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + \hat{\boldsymbol{F}}_{\nu}\dot{\boldsymbol{q}} + \hat{\boldsymbol{g}}(\boldsymbol{q}).$$

The controller output **u** is determined by the following equation

$$\mathbf{u} = \hat{\mathbf{B}}(\mathbf{q})\mathbf{y} + \hat{\mathbf{n}}(\mathbf{q}, \dot{\mathbf{q}}),$$

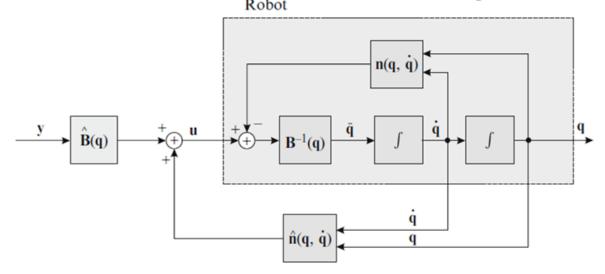
where the approximate inverse dynamic model of the robot was used.

$$n(q,\dot{q}) = C(q,\dot{q})\dot{q} + F_{\nu}\dot{q} + g(q).$$

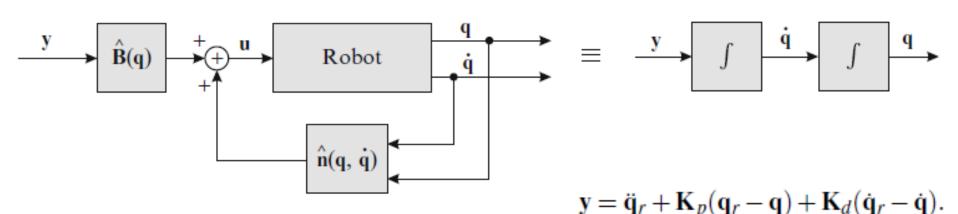
$$B(q)\ddot{q} + n(q,\dot{q}) = \tau.$$

$$\ddot{\mathbf{q}} = \mathbf{B}^{-1}(\mathbf{q}) \left(\mathbf{u} - \mathbf{n}(\mathbf{q}, \dot{\mathbf{q}}) \right).$$

based on inverse dynamics



5. 7.7 Linearization of the control system by implementing the inverse dynamic model



7.8 The linearized system

based on inverse dynamics

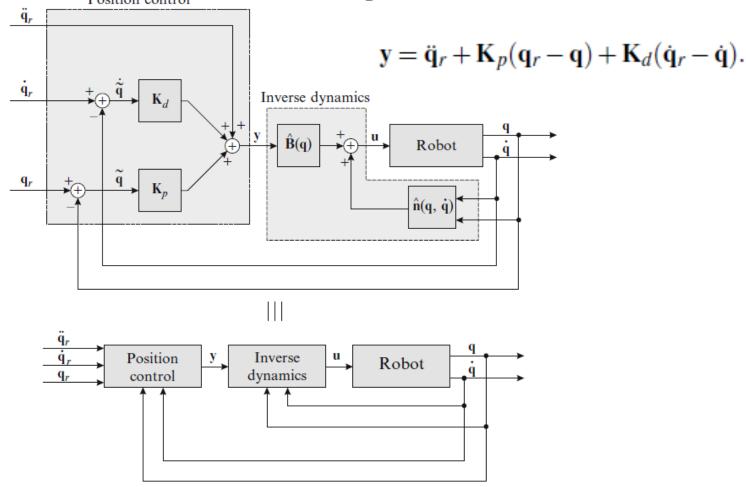
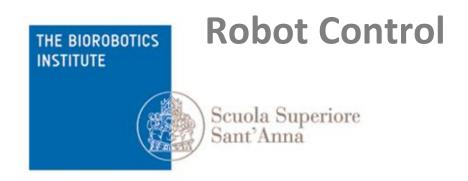


Fig. 7.9 Control of the robot based on inverse dynamics



- Control of one joint motion:
 - PID controller
- Control of the manipulator motion:
 - Trajectory planning
 - Motion control in joint space
 - Motion control in operational space

Motion control in operational space

- In the movement from x_i to x_d the robot end effector follows a trajectory in the operational space, according to a planned time law.
- e.g. linear or curvilinear trajectory

Motion control in operational space

- To make the robot follow a trajectory $(t, p(t), \Phi(t), \dot{p}(t), \omega(t))$
- To set joint velocities and accelerations in time, in order to reach the final desired position, expressed in Cartesian coordinates (Jacobian)
- To set voltages and currents to give to the motors in order to apply to the joints the velocities and the accelerations calculated with the Jacobian

Differential kinematics

Set the relations between the **joint velocities** and the corresponding **angular and linear velocities** of the end effector.

Such relations are decribed in a transformation matrix (Jacobian) which depends on the robot configuration.

Differential kinematics

Geometric Jacobian = transformation matrix depending on the current robot configuration

$$v = \begin{bmatrix} \dot{p} \\ \omega \end{bmatrix} = J(q)\dot{q}$$

j(q) = geometric Jacobian \dot{p} = linear velocity of the end effector ω = angular velocity of the end effector \dot{q} = joint velocity

Differential kinematics

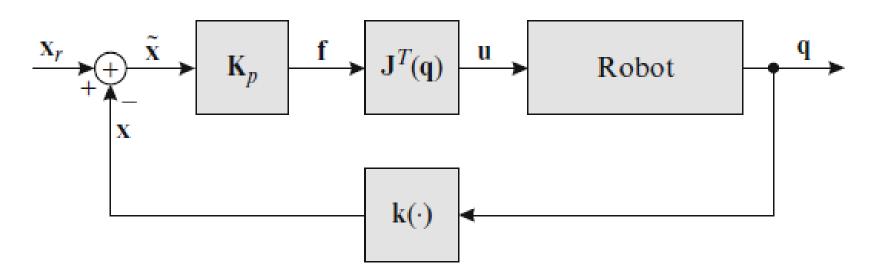
To find the joint velocities given the end effector velocity in operational space

$$v = \begin{bmatrix} \dot{p} \\ \omega \end{bmatrix} = J(q)\dot{q}$$
$$\dot{q} = J^{-1}(q)v = J^{-1}(q)\begin{bmatrix} \dot{p} \\ \omega \end{bmatrix}$$

J⁻¹ is the inverse Jacobian

Integral numerical methods allows to find the q vector from the vector of joint velocities

Motion control in operational space based on the transposed Jacobian matrix



Control based on the transposed Jacobian matrix

$$\mathbf{f} = \mathbf{K}_p \tilde{\mathbf{x}}.$$
 $\mathbf{u} = \mathbf{J}^T(\mathbf{q})\mathbf{f}.$

f = force at end effector

Motion control in operational space based on the inverse Jacobian matrix

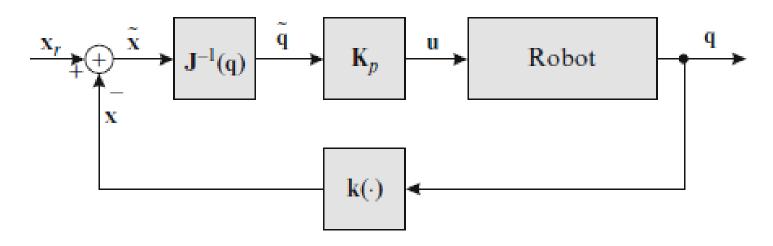
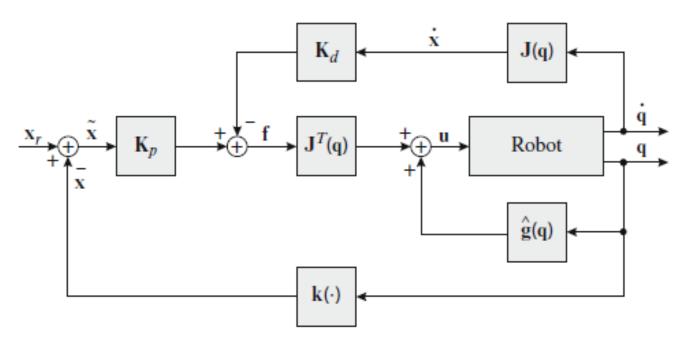


Fig. 7.11 Control based on the inverse Jacobian matrix

$$\dot{\mathbf{x}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}} \quad \Leftrightarrow \quad \frac{d\mathbf{x}}{dt} = \mathbf{J}(\mathbf{q})\frac{d\mathbf{q}}{dt}.$$
 for small displacements $d\mathbf{x} = \mathbf{J}(\mathbf{q})d\mathbf{q}.$ $\mathbf{q} = \mathbf{J}^{-1}(\mathbf{q})\tilde{\mathbf{x}}.$ $\mathbf{u} = \mathbf{K}_p\tilde{\mathbf{q}}.$

Motion control in operational space PD control with gravity compensation



PD control with gravity compensation in external coordinates

$$\dot{\mathbf{x}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}.$$

$$\mathbf{f} = \mathbf{K}_{p}\tilde{\mathbf{x}} - \mathbf{K}_{d}\dot{\mathbf{x}}.$$

$$\mathbf{u} = \mathbf{J}^{T}(\mathbf{q})\mathbf{f} + \hat{\mathbf{g}}(\mathbf{q}).$$

Motion control in operational space based on inverse dynamics

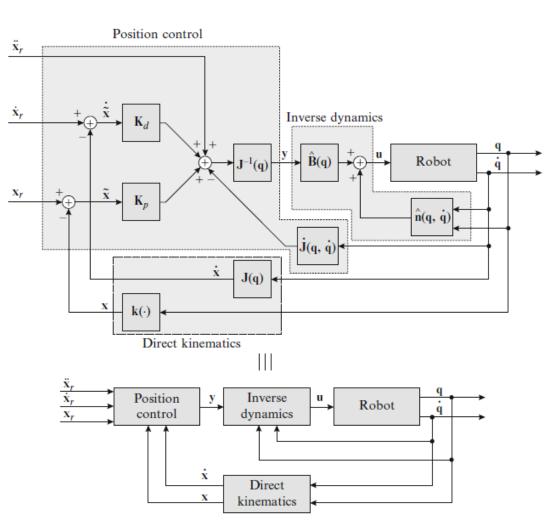


Fig. 7.13 Robot control based on inverse dynamics in external coordinates

$$\dot{\mathbf{x}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}.\tag{7.33}$$

By calculating the time derivative of equation (7.33), we obtain

$$\ddot{\mathbf{x}} = \mathbf{J}(\mathbf{q})\ddot{\mathbf{q}} + \dot{\mathbf{J}}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}}.\tag{7.34}$$

The error of the pose of the robot end-effector is determined as the difference between its desired and its actual pose

$$\tilde{\mathbf{x}} = \mathbf{x}_r - \mathbf{x} = \mathbf{x}_r - \mathbf{k}(\mathbf{q}). \tag{7.35}$$

In a similar way the velocity error of the robot end-effector is determined

$$\dot{\tilde{\mathbf{x}}} = \dot{\mathbf{x}}_r - \dot{\mathbf{x}} = \dot{\mathbf{x}}_r - \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}.\tag{7.36}$$

The acceleration error is the difference between the desired and the actual acceleration

$$\ddot{\tilde{\mathbf{x}}} = \ddot{\mathbf{x}}_r - \ddot{\mathbf{x}}.\tag{7.37}$$

When developing the inverse dynamics based controller in the internal coordinates, equation (7.19) was derived describing the dynamics of the control error in the form $\ddot{\mathbf{q}} + \mathbf{K}_d \dot{\mathbf{q}} + \mathbf{K}_p \tilde{\mathbf{q}} = \mathbf{0}$. An analogous equation can be written for the error of the endeffector pose. From this equation the acceleration $\ddot{\mathbf{x}}$ of the robot end-effector can be expressed

$$\ddot{\tilde{\mathbf{x}}} + \mathbf{K}_d \dot{\tilde{\mathbf{x}}} + \mathbf{K}_p \tilde{\mathbf{x}} = \mathbf{0} \quad \Rightarrow \quad \ddot{\mathbf{x}} = \ddot{\mathbf{x}}_r + \mathbf{K}_d \dot{\tilde{\mathbf{x}}} + \mathbf{K}_p \tilde{\mathbf{x}}. \tag{7.38}$$

From equation (7.34) we express $\ddot{\mathbf{q}}$ taking into account the equality $\mathbf{y} = \ddot{\mathbf{q}}$

$$\mathbf{y} = \mathbf{J}^{-1}(\mathbf{q}) \left(\ddot{\mathbf{x}} - \dot{\mathbf{J}}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} \right). \tag{7.39}$$

By replacing $\ddot{\mathbf{x}}$ in equation (7.39) with expression (7.38), the control algorithm based on inverse dynamics in the external coordinates is obtained

$$\mathbf{y} = \mathbf{J}^{-1}(\mathbf{q}) \left(\ddot{\mathbf{x}}_r + \mathbf{K}_d \dot{\tilde{\mathbf{x}}} + \mathbf{K}_p \tilde{\mathbf{x}} - \dot{\mathbf{J}}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} \right). \tag{7.40}$$

The control scheme encompassing the linearization of the system based on inverse dynamics (7.31) and the closed loop control (7.40) is shown in Figure 7.13.

Motion control in operational space



Force control

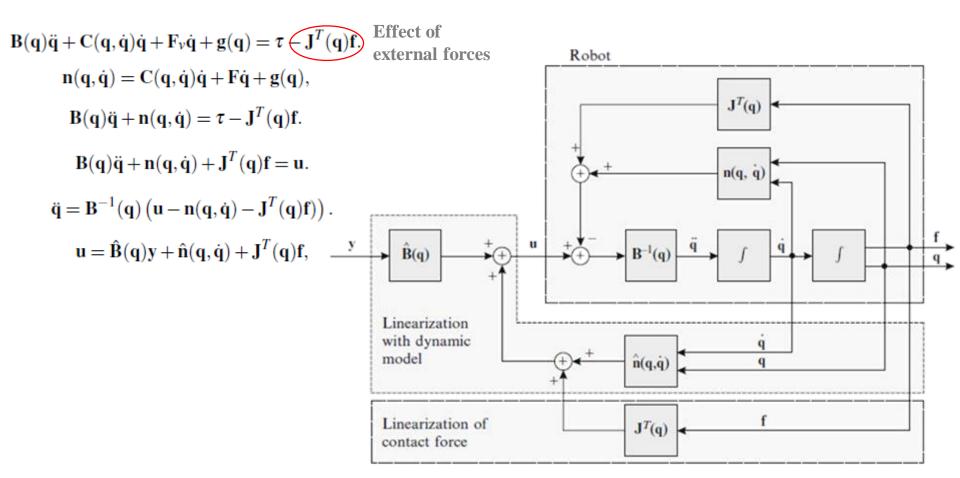


Fig. 7.14 Linearization of the control system by implementing the inverse dynamic model and the measured contact force

Force control

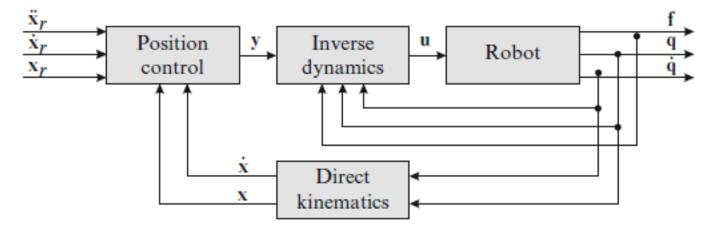


Fig. 7.15 Robot control based on inverse dynamics in external coordinates including the contact force

Force control

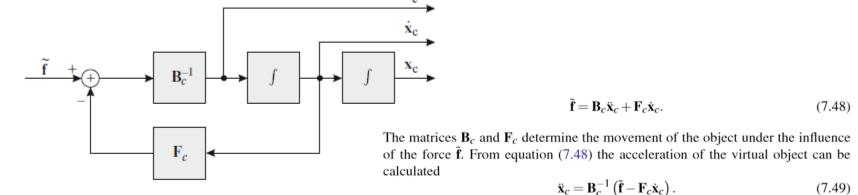


Fig. 7.16 Force control translated into control of the pose of robot end-effector

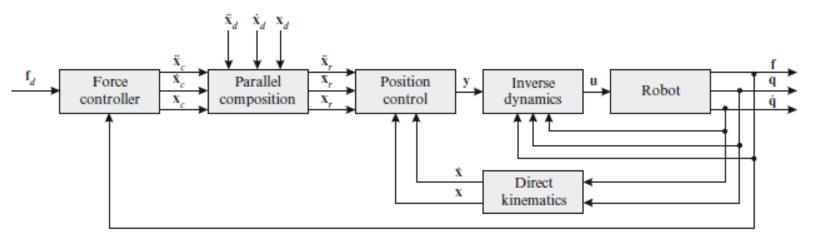


Fig. 7.17 Direct force control in the external coordinates

Performance of a manipulator

- Payload: maximum load
- Velocity: maximum velocity in operational space
- Accuracy: difference between the position calculated by the control system and the actual position
- Repeatability: measure of the robot capability to reach the same position (function of the control system and algorithm, in addition to the robot characteristics)

KUKA KR 15/2

- Dof: 6
- Payload: 15 kg
- Max. reach: 1570 mm
- Repeatability: $< \pm 0.1 \, \text{mm}$
- Weight: 222 kg

PUMA 560

- Dof: 6
- Payload: 2 kg
- Velocity: 1.0 m/s
- Repeatability: $< \pm 0.1 \, \text{mm}$
- Weight: 120 lb = 55 Kg

Dexter Arm

- Cable actuated
- d.o.f.: 8
- Workspace: 1200 mm x 350°

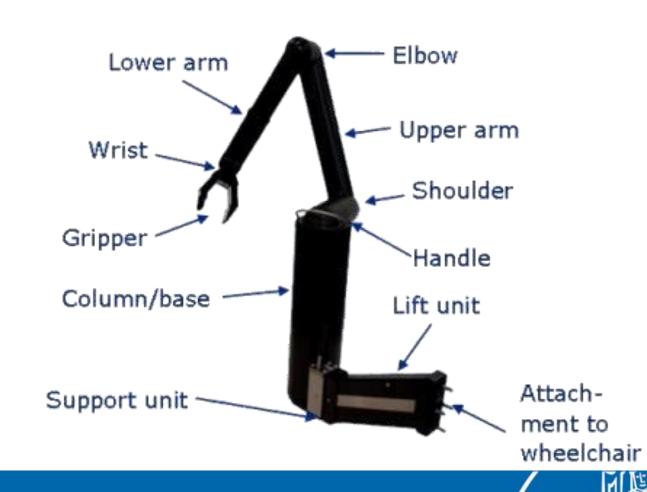
Repeatability: ± 1mm

- Velocity: 0.2 m/s
- Payload: 2 Kg
- Weight: 40 Kg



Manus

- Cable actuated
- d.o.f.: 6
- Velocity: 0.2 m/s
- Payload: 2 Kg
- Power: 24V DC
- Weight: 12 Kg

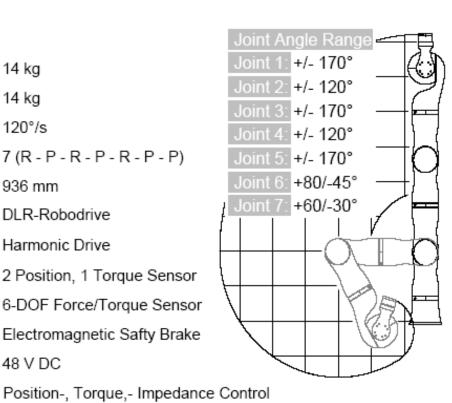


DLR Arm

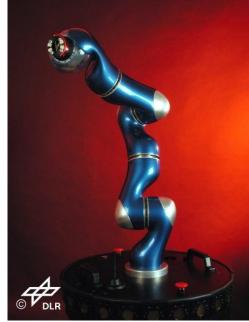
Total Weight	14 kg
Max. Payload	14 kg
Max. Joint Speed	120°/s
Nr. of Axes	7 (R - P - R - P - R - P - P)
Maximum Reach	936 mm
Motors	DLR-Robodrive
Gears	Harmonic Drive
Sensors (each Joint)	2 Position, 1 Torque Sensor
Sensor (wrist)	6-DOF Force/Torque Sensor
Brakes	Electromagnetic Safty Brake

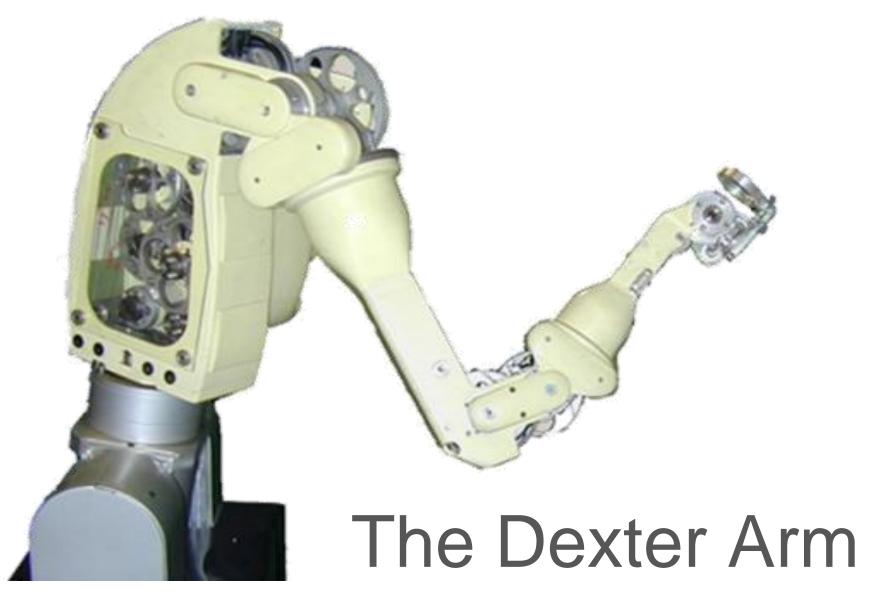
48 V DC

optical SERCOS-Bus



Control Cycles: Current 40 kHz; Joint 3 kHz; Cartesian 1 kHz Integrated Electronics, internal Cabling, Communications by





The Dexter Arm

• Workspace: 1200 mm x 350°

Repeatability: <u>+</u> 1mm

Velocity: 0.2 m/s

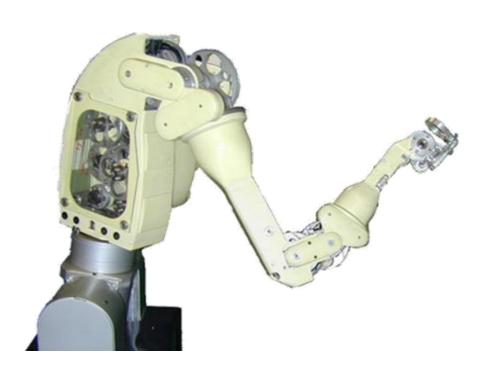
Payload: 2 Kg

• D.o.f.: 8

Power: 24V DC

Weight: 40 Kg

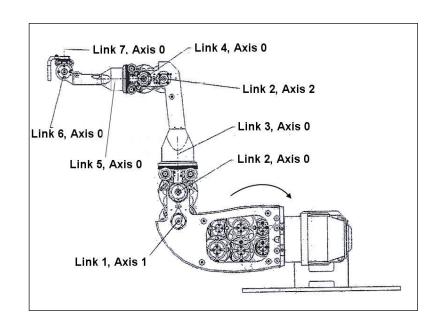
The Dexter Arm



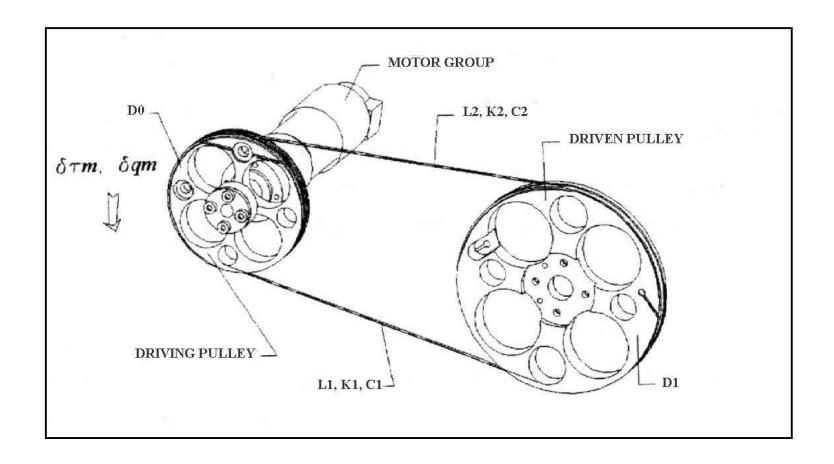
- 8-d.o.f. anthropomorphic redundant robot arm, composed of trunk, shoulder, elbow and wrist
- designed for service applications and personal assistance in residential sites, such as houses or hospitals
- mechanically coupled structure: the mechanical transmission system is realized with pulleys and steel cables
- main characteristics: reduced accuracy, lighter mechanical structure, safe and intrinsically compliant structure

The Dexter arm

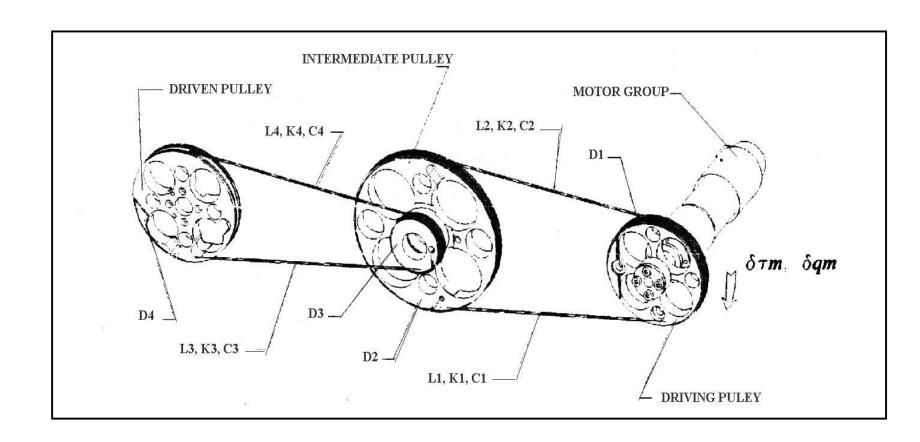
- Transmission system realized with pulleys and steel cables
- Joints J0 and J1 are actuated by motors and driving gear-boxes directly connected to the articulation axis
- Joints J2,...,J7 are actuated by DC-motors installed on link 1



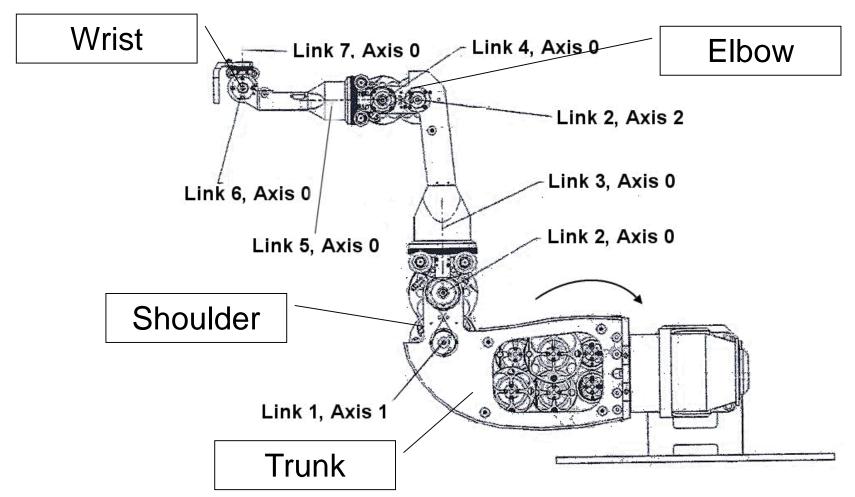
Transmission #6



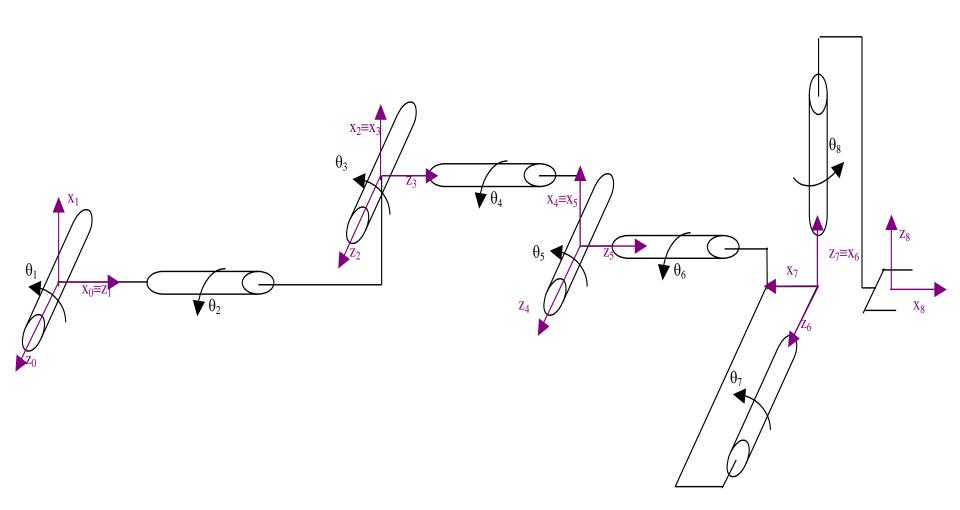
Transmissions #2-5 and 7



Anthropomorphic structure



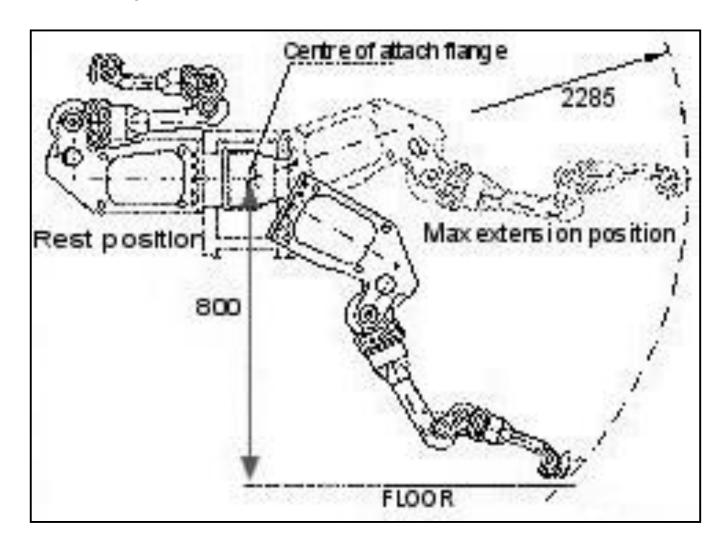
Kinematic Configuration



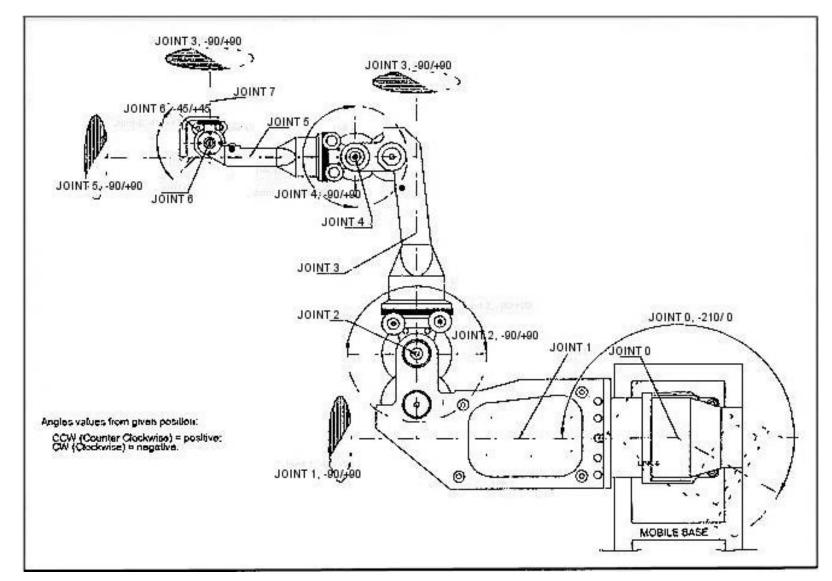
Denavit-Hartenberg Parameters

Joint	a _i [mm]	d _i [mm]	α _i [rad]	θ _i [rad]
1	0	0	π/2	θ_1
2	144	450	- π/2	θ_2
3	0	0	π/2	θ_3
4	-100	350	- π/2	θ_4
5	0	0	π/2	θ_5
6	-24	250	- π/2	θ_6
7	0	0	π/2	θ_7
8	100	0	0	θ_8

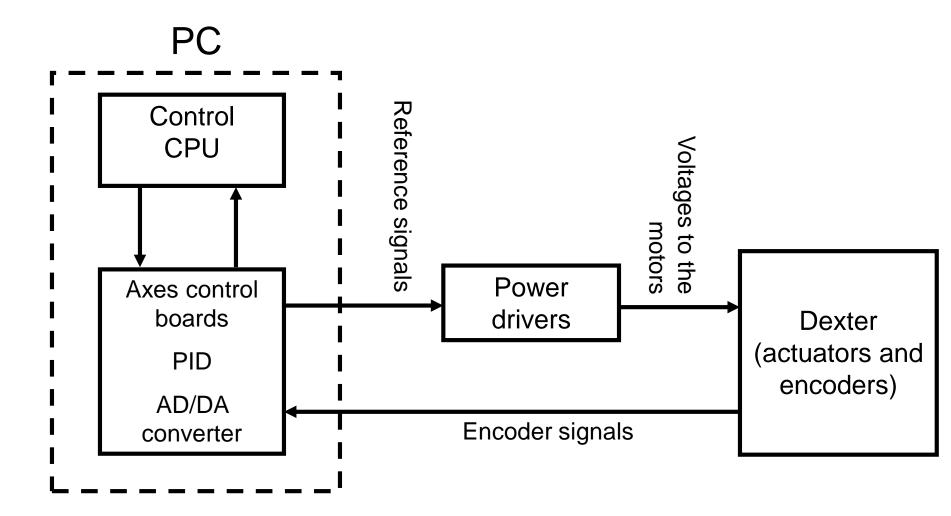
The Dexter Workspace



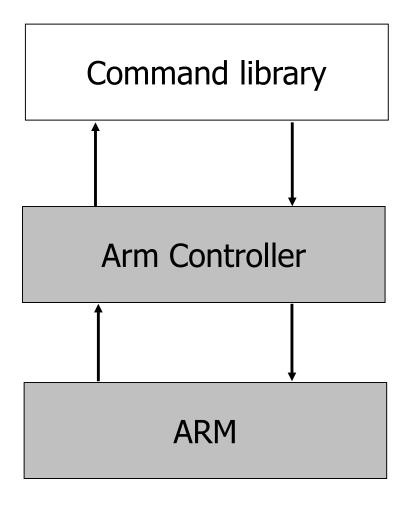
Joint Ranges



Control system



Software architecture



Current position reading

- In joint space:

bool read_arm_q (double* q)

• q: pointer to a 8-double array containing the arm position in joint degrees

- In Cartesian space:

bool read_arm_c (double* p)

• p: pointer to a 6-double array containing the end-effector position in mm and orientation in degrees, in Cartesian space

bool move_arm_q(double * q)

• q: puntatore ad un array di 8 double contenente la posizione in gradi dei giunti del braccio

Motion commands

- In joint space:

bool move_arm_q(double* q)

 q: pointer to a 8-double array containing the arm position in joint degrees

Motion commands

- In Cartesian space:

bool move_arm_c7(double* p, double elbow, double J0, double velocity)

- p: pointer to a 6-double array containing the end-effector position in mm and orientation in degrees, in Cartesian space
- Elbow: elbow angle in degrees
- JO: final position of joint 0
- Velocity: ratio of maximum velocity

Kinematic inversion on 7 dof

Motion commands

- In Cartesian space:

bool move_arm_c(double* p, double elbow, double velocity)

- p: pointer to a 6-double array containing the end-effector position in mm and orientation in degrees, in Cartesian space
- Elbow: elbow angle in degrees
- Velocity: ratio of maximum velocity

Kinematic inversion on 8 dof

