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Neuroscience modeling 
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 Introduction to basic aspects of brain computation 

 Introduction to neurophysiology 

 Neural modeling: 

 Elements of neuronal dynamics 

 Elementary neuron models 

 Neuronal Coding 

 Biologically detailed models:  
                                                   the Hodgkin-Huxley Model 

 Spiking neuron models, spiking neural networks 

 Izhikevich Model 

 Introduction to Reservoir Computing and Liquid State Machines 

 Introduction to glia and astrocyte cells, the role of astrocytes in a 
computational brain, modeling neuron-astrocyte interaction, neuron-
astrocyte networks,  

 The role of computational neuroscience in neuro-biology and robotics 
applications. 
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Conductance-based Neuron Models 



Reversal Potential (Repetita) 

 The reversal potential of an ion is its Nernst potential 

 

 

 If Δ𝑢 <  𝐸[ion]  ions flow into the cell 

 If Δ𝑢 >  𝐸[ion]  ions flow out of the cell 
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 Ion channels: try to equilibrate 
the concentration of ions, i.e. try 
to meet the reversal potential 

 Ion pumps: active pumps that 
balance the flow of ions 

 



Equivalent Circuit (Repetita) 

 Electrical properties of neurons’ membranes depicted in terms 
of the electrical circuit 
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 Membrane: capacitor 

 Ions’ channels: resistors + battery 
(reversal potentials) 
 



Equivalent Circuit 
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 Membrane: capacitor 

 Ions’ channels: resistors + battery 
(reversal potentials) 
 

inward current 

outward current 
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 Membrane: capacitor 

 Ions’ channels: resistors + battery 
(reversal potentials) 
 

inward current 

outward current 

?? 



Equivalent Circuit 
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 Membrane: capacitor 

 Ions’ channels: resistors + battery 
(reversal potentials) 

 Applied current 𝐼 
 

Using Kirchhoff’s Current Law (KCL): 
 



Conductances 
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Ion channels: 

 Large transmembrane proteins with aqueous pores 

 Electrical conductance of individual channels is controlled by gates 
(gating particles) 

 Gates  can change the state of the channel: open/closed 

 Gates can be sensitive to the membrane potential (voltage-dependent 
conductances), intracellular agents, neurotransmitters, …. 
 

non-Ohmic currents 
(conductances are not constant) 



Persistent Conductances 

 a voltage sensor is connected to a 
swinging (activation) gate that can 
open or close the pore 

 gate opening: activation of the 
conductance 

 gate closing: de-activation of the 
conductance 

 results in a persistent (or non-
inactivating) conductance 

 Probability of the channel to be 
opened: 𝑝 = 𝑛𝑘 
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gating variable: the probability that  
one of the k sub-units of the gate is 
opened 

Voltage dependency: 

depolarization of the membrane 
leads to increasing 𝑛 



Transient Conductances 

 Two gates regulates the channel:  
1 activation gate & 1 inactivation gate 

 The activation gate is opened with 
probability 𝑚𝑘 

 The inactivation gate (the ball) does 
not block the channel with probability 
ℎ 

 The channel is opened with probability 
𝑚𝑘ℎ 

 The channel opens transiently while 
the membrane is depolarized 
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Voltage dependency: 

Depolarization: increasing 𝑚, decreasing ℎ 

Hyper-polarization: decreasing 𝑚, increasing ℎ 

 



16 

The Hodgkin-Huxley Model 



The Hodgkin-Huxley Model 

 One of the most important models in Computational 
Neuroscience 

 Based on studies by Hodgkin and Huxley (in the 50s) on 
the squid axon 

 The squid axon has 3 major currents: 

 Voltage-gated persistent K+ current with 4 activation gates 

 Voltage-gated transient Na+ current with 3 activation gates and 
1 inactivation gate 

 Ohmic leak current (all the other ions) 
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Hodgkin-Huxley Model 
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leak current 



Hodgkin-Huxley Model 
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leak current 

 𝑚, 𝑛, ℎ - gating variables 

 α, β – empirical functions 
            adjusted by Hodgkin and Huxley 

 



Hodgkin-Huxley Model 

20 

The  equations for the gating variables can be rewritten as 

where: 

 𝑛0 𝑡 ,𝑚0(𝑡), ℎ0 𝑡  
asymptotic values 

 τ𝑛 𝑡 , τ𝑚(𝑡), τℎ 𝑡  
time constants 



Hodgkin-Huxley Model – Dynamics 
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 Sodium (Na+) – inward current: 

 Activation increases for increasing membrane potential 

 Inactivation increases for increasing membrane potential 

 BUT: activation is faster than inactivation (transient current) 

 Potassium (K+) – outward current: 

 Activation increases for increasing membrane potential 

 BUT: activation is relatively slow (slower than activation of Na+) 

n → K+         m, h → Na+  

 

asymptotic values time constants 



Hodgkin-Huxley Model – Spike Generation 
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 An external input (e.g. an EPSP) leads to a depolarization (u increases) 

 Conductance of Na+ increases rapidly, Na+ ions flow in the cell and 𝑢 increases even further 

 If the feedback is strong enough the action potential is initiated 

 At high values of depolarization, the Na+ current is stopped by the inactivation gate (ℎ →0), 
conductance of K+ increases and K+ ions flow outside the cell 

 The membrane is re-polarized, with a negative overshoot (refractoriness)  

 

 Threshold behavior: if the stimulating input is below a certain amplitude the action potential 
is not initiated and the membrane is re-polarized 

 



The Hodgkin-Huxley Model - Summary 

23 

 Conductance-based neuron model 

 Processes that regulate the voltage-dependent K+ and Na+ conductances well described 

 Biophysical mechanisms responsible for action potentials explicitly included in the 
mathematical model 

 Accurate biological realism, BUT slow and difficult to analyze. 
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Formal Spiking Neuron Models 



Phenomenological Spiking Neuron 

 Neuron models can be simplified and simulations can be 
accelerated if the biophysical mechanisms of spike-
generation are not included explicitly in the model 

 Formal threshold models of neuronal firing: 

 Spikes are stereotyped events that occur when the membrane 
potential crosses the threshold from below 

 

 

 

 Spikes are fully characterized by their firing time 

 Model only the sub-threshold dynamics 
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What does a neuron do? 
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Voltage 

Time 

Input 

Voltage 

Simplest Idea: an Integrator 

 



Integrate-and-Fire Model 

 The most simple case: all membrane conductances are 
ignored 

 The corresponding equivalent (simplified) circuit only 
contains a capacitor 
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 From the definition of the capacity: 

 KCL: 

 Spikes are formal events characterized by the firing time 

 

 After the spike the potential is reset to 𝑢𝑟 

 

 Absolute refractory period: after the spike, the integration 
is suspended for  

 



Integrate-and-Fire Model 

 Equations 

 

 

 

 
 

 Suppose a constant input current 𝐼0is applied (e.g. an EPSP), and the last 

spike occurred at time 𝑡(1): 
 
the time course of the membrane potential can be obtained by integration 

in the time interval 𝑡(1); 𝑡  
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𝑢𝑟 is often set to 0 



Leaky Integrate-and-Fire Model 

 The entire membrane conductance is modeled as a single 
leakage term 

 Assumption: the conductances are all constant 
(true for small fluctuations around the resting membrane 
potential) 

 Corresponding equivalent circuit: a capacitor in parallel 
with a resistor 
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Ohm’s Law + Kirchhoff’s Voltage Law: 

KCL: 

membrane 
time constant 



Leaky Integrate-and-Fire Model 

 Time course of the membrane potential? 

 Suppose a constant input current 𝐼0is applied and the 

last spike occurred at time 𝑡(1)  

 𝑢(𝑡)??? 
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First-Order linear differential equation (with initial condition 𝑢(𝑡(1)) =  𝑢𝑟 = 0) 



First-Order Linear Differential Equation 
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solution: 

where: 

Also useful to remember: 

     𝑒𝑓(𝑡)𝑓′ 𝑡 𝑑𝑡 =  𝑒𝑓(𝑡) + 𝑐 



Euler Method 
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By discretizing the temporal variable 𝑡: ℎ = dimension of the 
interval 

Numerical (approximate) method for solving ODEs 

The evolution of the system can be approximated by 



Leaky Integrate-and-Fire Model 

 Time course of the membrane potential? 

 Suppose a constant input current 𝐼0is applied and the 

last spike occurred at time 𝑡(1)  
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First-Order linear differential equation (with initial condition 𝑢(𝑡(1)) =  𝑢𝑟 = 0) 

(The membrane potential asymptotically approaches 𝑅𝐼0) 



Leaky Integrate-and-Fire Model 

 When will next spike occur? 
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Firing rate (with refractory period) 

without refractoriness 

with refractoriness 
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Izhikevich Model 



Simple Spiking Models 

 Modeling the dynamics of excitable neurons 

 Fast activation of Na+ channels 

 Slow inactivation of Na+/activation of K+ 

 Dynamical system with 2 variables 

 One variable for the fast voltage increase 

 One recovery variable for slow voltage decrease 

 In many cases the sub-threshold dynamics leading to the 
action potential are more important than the shape of the 
action potential itself 
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Neuron Models – Biological Plausibility vs Cost 
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Izhikevich Model 

 Two dimensional system of ordinary differential equations 
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 𝑢 is the membrane potential, 

  𝑟 is a recovery variable 
(Na+ inactivation/K+ activation) 
provides negative feedback to 𝑢 

 𝑎, 𝑏, 𝑐, 𝑑 are the parameters of the 
model 

 𝐼 is the applied current 

If 𝑢(𝑡)  ≥  30 mV 



Izhikevich Model 

 Two dimensional system of ordinary differential equations 
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If 𝑢(𝑡)  ≥  30 mV 

Often in literature: 

 v is the membrane potential 

 u is the recovery variable 



Neuronal Dynamics 

 The behavior of a neuron does not depends only on its 
electrophysiological properties 

 Two neurons with the same electrophysiological 
properties can respond differently to the same input 

 Neurons can be thought as dynamical systems 

 Dynamical properties of the neurons have a major role 
Especially bifurcation dynamics 
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A bifurcation occurs when a small 
change to the parameter values of 
a system results in a sudden 
qualitative change in its behavior 



Neuronal Dynamics 

 Neurons are excitable because they are near a transition 
(bifurcation) between resting and sustained spiking activity 
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The system is excitable because its equilibrium is near a bifurcation 



Neuronal Dynamics 

 Four generic bifurcations 
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 Monostable: the neuron does not 
exhibits the presence of resting and 
tonic spiking 

 Resonator: there exist small amplitude 
oscillations of membrane potential 



Neuronal Dynamics 

 Integrators vs Resonators 
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Firing Patterns 
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 The most fundamental classes of firing patterns are just 6 



Neuro-Computational Features 
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 20 Most prominent features of 
biological spiking neurons 

 The Izhikevich model can simulate 
all of them 

LAB 

 Izhikevich’s book – Chapter 8 

 Papers: 
E.M. Izhikevich, "Which model to use for cortical 
spiking neurons?." IEEE transactions on neural 
networks 15.5 (2004): 1063-1070. 
 
E.M. Izhikevich, "Simple model of spiking 
neurons." IEEE Transactions on neural networks 
14.6 (2003): 1569-1572. 

 web: 
http://izhikevich.org/publications/whichmod.htm 

http://izhikevich.org/publications/whichmod.htm
http://izhikevich.org/publications/whichmod.htm


Which Model to Use for Cortical Spiking 
Neurons? 
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Spiking Neural Networks? 
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 What happens if we connect spiking 
neurons to form a network? 

…see you on Monday!! 


