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Neuroscience modeling

» Introduction to basic aspects of brain computation
» Introduction to neurophysiology
» Neural modeling:

Elements of neuronal dynamics

Elementary neuron models

Neuronal Coding

Biologically detailed models:
the Hodgkin-Huxley Model

Spiking neuron models, spiking neural networks
Izhikevich Model
» Introduction to Reservoir Computing and Liquid State Machines

» Introduction to glia and astrocyte cells, the role of astrocytes in a
computational brain, modeling neuron-astrocyte interaction, neuron-

astrocyte networks,

» The role of computational neuroscience in neuro-biology and robotics
applications.
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Conductance-based Neuron Models




Na* (5-15 mM)
K" (140 mM)
Cl™ (4 mM)

Reversal Potential (Repetita)

» The reversal potential of anion is its Nernst potential

n —_—
dlion] Nin

E [ion] —

» It Au < Efjony = ions flow into the cell

» It Au > Efjon) = ions flow out of the cell

Qutside Equilibrium Potentials E E E E
K < <u < Lng <
Na™ (145 mM) Nat 2100 145 — 00 mV Cl rest a Ca
KT (5mM B , ~65mV
st CL7 (110 mM) 62log 75> = 61 mV

CaZ*(2.5-5 mM)
AT (25 mM)

Kt 62e:3; =—9mV  » |on channels: try to equilibrate
O —62log 110 = 89 mV the concentration of ions, i.e. try

to meet the reversal potential

2+ ; Ca?t 31 lOgl%—'_S; = 136 mV

CaZ"(0.1uM 5 _ . _

A (147 mM) ) slloggoer = 16mV ) Jon pumps: active pumps that
. s e balance the flow of ions
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Equivalent Circuit (Repetita)

» Electrical properties of neurons” membranes depicted in terms
of the electrical circuit

outside

TICa _TIK lTIm Tcd—? » Membrane: capacitor
-K ){{QCI

_ J:C » lons’ channels: resistors + battery
_EE (reversal potentials)

INa :gNa(u_ENa,) IC’a :gCa(U_ECa)

Ix = gk (u— Ek) It = gci(u — Ecy)



Equivalent Circuit

outside

Tlm LTI.«:a TIK Jla Tcd—? » Membrane: capacitor
2’% %’g& gEK )g_;’gq J:(; » lons’ channels: resistors + battery
I _[ (reversal potentials)
—E T E

inside

EK < ECl < Upest < ENa < ECa

INg = gNa(U — ENa) Icq = gC’a(u — ECa) inward current

Ik = gx(u— Ek) Iei = go1(u — Egy) outward current
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Equivalent Circuit

outside

Py, LTI.«:a TIK Jla Tcd—? » Membrane: capacitor
%’gm %’g.:a g% )g_f%a #(; » lons’ channels: resistors + battery
[ - _[E (reversal potentials)

inside

EK < EC’l < Upest < ENa < ECa

INg = gNa(U — ENa) Icq = gC’a(u — ECa) inward current

Ik = gx(u— Ek) Ici = go1(u — Egy) outward current

??
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Equivalent Circuit

outside

Py, LTI.«:a TIK Jla TCd—;‘ » NMembrane: capacitor

%’gm %’g& geK 2 & gc » lons’ channels: resistors + battery
[ . _[E (reversal potentials)
- FK
| » Applied current I

inside
INa:gNa(U—ENa,) IK:gK(U_EK) ICa:gCa(u_ECa) IC'l :gC’l(u_ECl) Ccé_’;b
I

T~

[l
IS
N8
Q
SR
[l
)

Using Kirchhoff’s Current Law (KCL): C
CL =]—Ing—Ica—Ix — Ic

C% =1 —gna(u — ENa) — gca(t — Eca) — 9x(u — Ex) — gci(u — Ecy)
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Conductances

outside

Extracellular Na+
S wage | iy
a ggx )fgd éc .I'\
T Ex IEU
in?ide
non-Ohmic currents A e
(conductances are not constant) Inacelia ®* Closed Open  Closed
(not activated) (activated) (inactivated)
lon channels:
» Large transmembrane proteins with agqueous pores
» Electrical conductance of individual channels is controlled by gates
(gating particles)
» Gates can change the state of the channel: open/closed
» Gates can be sensitive to the membrane potential (voltage-dependent
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conductances), intracellular agents, neurotransmitters, ....



Persistent Conductances

lipid bllayer

ll ’.'
| [~ sensor !
g R
iy © "'. — " gate

aqueous e A
selectivity \
filter / Pore D J/

Q™ channel
protein |

| L intracellular
L

anchor
protein

Voltage dependency:

depolarization of the membrane
leads to increasing n
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4

a voltage sensor is connected to a
swinging (activation) gate that can
open or close the pore

gate opening: activation of the
conductance

gate closing: de-activation of the
conductance

results in a persistent (or non-
inactivating) conductance

Probability of the channel to be
opened: p = n*

gating variable: the probability that
one of the k sub-units of the gate is
opened



Transient Conductances

||||||||||||

~% activation
- gate

D
p— b

inactivation
gate

1+
1+

IL

extracellular intracellular

e | N
L'__.Di

Voltage dependency:

Two gates regulates the channel:
1 activation gate & 1 inactivation gate

The activation gate is opened with
probability m*

The inactivation gate (the ball) does

not block the channel with probability
h

The channel is opened with probability
mkh

The channel opens transiently while
the membrane is depolarized

Depolarization: increasing m, decreasing h

Hyper-polarization: decreasing m, increasing h
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The Hodgkin-Huxley Model




The Hodgkin-Huxley Model

» One of the most important models in Computational
Neuroscience

» Based on studies by Hodgkin and Huxley (in the 50s) on
the squid axon
» The squid axon has 3 major currents:
Voltage-gated persistent K* current with 4 activation gates

Voltage-gated transient Na* current with 3 activation gates and
1 inactivation gate

Ohmic leak current (all the other ions)
I[ion] = Glion] P (u - E[zon])
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Hodgkin-Huxley Model

1|
L T

leak current

I
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Hodgkin-Huxley Model

» m,n,h - gating variables

» o, B —empirical functions
adjusted by Hodgkin and Huxley
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Hodgkin-Huxley Model

Il‘

N N

Ik Ing I,

N 7

[ , g f ) )
Tﬂﬂ ﬁ CG =T—gxn" (u—Ex)=gnam’h (u—Eya) g1 (u— EL)

The equations for the gating variables can be rewritten as

dn __ mno(u)—u dm __ mo(u)—u dh __ ho(u)—u
dt Tn dt T dt Th
where:
no(u) = an(i?i%lwﬂn(”) = A > "O(t)»mo(t),lho(t)
_ U (1) . 1 asymptotic values

mo(u) = A (W) = oW

o () 1 4 Tn(t); Tm(t)/ Th(t)
hO(U) = an(W)+Bn(u)’ Th(u) — an(@)+Bn(w) time constants
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Hodgkin-Huxley Model — Dynamics

1.0

0.0
-100.0

» Sodium (Na*) —inward current:

» Potassium (K*) — outward current:
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asymptotic values

205}

e o = L

-50.0

50.0

DTU N
u [mV]

100.0

T(u) [ms]

time constants + +
100 | n—> K m, h - Na
rrllf‘\l'-, h ]
50 | N TN -
i e S ]
| m feel LT k-
= — T
-100.0 500 00 50.0 100.0
u [mV]

Activation increases for increasing membrane potential

Inactivation increases for increasing membrane potential

BUT: activation is faster than inactivation (transient current)

Activation increases for increasing membrane potential

BUT: activation is relatively slow (slower than activation of Na*)



Hodgkin-Huxley Model — Spike Generation

100

80

40

Au(t) [mV]

AU(t) [mV]

(%]
=] [=]

—

5 10 15 20 10 15 20 25 30

t [ms] t [ms]

An external input (e.g. an EPSP) leads to a depolarization (u increases)

Conductance of Na* increases rapidly, Na* ions flow in the cell and u increases even further

If the feedback is strong enough the action potential is initiated

At high values of depolarization, the Na* current is stopped by the inactivation gate (h —0),
conductance of K* increases and K* ions flow outside the cell

The membrane is re-polarized, with a negative overshoot (refractoriness)

Threshold behavior: if the stimulating input is below a certain amplitude the action potential

is not initiated and the membrane is re-polarized
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The Hodgkin-Huxley Model - Summary

I K I Na I L
- v

o

™ # .

C% =1 —gpn® (u—Eg)—gne m*h (u— Eng) — g1, (u— Ep)

% = ap(u)(1 —n) — Bu(u)n

dm

S = am(u)(1 —m) = B (u)m

% = an(u)(1 - h) = Bu(u)h

Conductance-based neuron model
Processes that regulate the voltage-dependent K* and Na* conductances well described

Biophysical mechanisms responsible for action potentials explicitly included in the
mathematical model

Accurate biological realism, BUT slow and difficult to analyze.
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Formal Spiking Neuron Models




Phenomenological Spiking Neuron

» Neuron models can be simplified and simulations can be
accelerated if the biophysical mechanisms of spike-
generation are not included explicitly in the model

» Formal threshold models of neuronal firing:

Spikes are stereotyped events that occur when the membrane
potential crosses the threshold from below

du(t)

dt t=t(f)

= ()

((F) . -u.(_f.{f}) — 1  and

Spikes are fully characterized by their firing time
Model only the sub-threshold dynamics
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What does a neuron do?
A

Voltage

Voltage

- Time Simplest Idea: an Integrator



Integrate-and-Fire Model

» The most simple case: all membrane conductances are
ignored

» The corresponding equivalent (simplified) circuit only
contains a capacitor

l[(t) » From the definition of the capacity: (' = % = Cfé_"; = Ic
: du _ du _ I(%)
IR S (ORI St
JiCT » Spikes are formal events characterized by the firing time

+(f) . u(t(f)) =9
» After the spike the potential is reset to u,.

» Absolute refractory period: after the spike, the integration
is suspended for A%bs
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Integrate-and-Fire Model

» Equations
Cdu _ 1Y)
d — C

= (). u(t(f)) =9

Climy o+ u(t) = uy u, is often set to 0

» Suppose a constant input current Iyis applied (e.g. an EPSP), and the last
spike occurred at time t(D).

the time course of the membrane potential can be obtained by integration
in the time interval t™: ¢

t
u(t) = [i) Bds = &(t —tW)
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Leaky Integrate-and-Fire Model

» The entire membrane conductance is modeled as a single
leakage term

» Assumption: the conductances are all constant

(true for small fluctuations around the resting membrane
potential)

» Corresponding equivalent circuit: a capacitor in parallel
with a resistor

29



Leaky Integrate-and-Fire Model

» The entire membrane conductance is modeled as a single
leakage term

» Assumption: the conductances are all constant

(true for small fluctuations around the resting membrane
potential)

» Corresponding equivalent circuit: a capacitor in parallel

with a resistor , | ,
Ohm’s Law + Kirchhoff’s Voltage Law:

u(t):IRRélR:%

KCL:
Io+1Ip=1I(t)=> C% = D — f()

Tm% — —u(t) + RI(t) RC membrane
Tm =
time constant
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Leaky Integrate-and-Fire Model

» Time course of the membrane potential?

» Suppose a constant input current Iyis applied and the
last spike occurred at time (1)

by u(t)???
TS = —u(t) + RI(t)

First-Order linear differential equation (with initial condition u(tM) = u, = 0)
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First-Order Linear Differential Equation

{ y'(t) +at)y(t) = f(1)

y(to) = Yo

solution: y(t) = Yo e_A(t) + e_A(t) ft f(S)eA(S)dS

to

where: A(t) — [ a,(s)ds

to

Also useful to remember:

jef(t)f'(t)dt = ef(t) + c
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Euler Method

Numerical (approximate) method for solving ODEs

{y’(t) = f(t,y(t))
y(to) = Yo

h = dimension of the
interval

By discretizing the temporal variable t:  t,, = o + nh

The evolution of the system can be approximated by

Y(tns1) = y(tn) + hf(tn, y(tn))
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Leaky Integrate-and-Fire Model

» Time course of the membrane potential?

» Suppose a constant input current Iyis applied and the
last spike occurred at time (1)

by u(t)???
TS = —u(t) + RI(t)

First-Order linear differential equation (with initial condition u(tM) = u, = 0)

t—¢(1)
u(t) = Rl (1 —e )

(The membrane potential asymptotically approaches RI,)
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Leaky Integrate-and-Fire Model

» When will next spike occur?

u(t?) =9 = RI, (1 — e‘%) T = ¢+(2) _ (1)

AN

RIy—9

Firing rate (with refractory period)

without refractoriness

with refractoriness

60 8.0
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|zhikevich Model
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Simple Spiking Models

» Modeling the dynamics of excitable neurons
Fast activation of Na* channels
Slow inactivation of Na*/activation of K*

» Dynamical system with 2 variables
One variable for the fast voltage increase

One recovery variable for slow voltage decrease

» In many cases the sub-threshold dynamics leading to the
action potential are more important than the shape of the
action potential itself
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Neuron Models — Biological Plausibility vs Cost

i '.integrate-and—fire
3 . ¢/Nntegrate-and-fire with adaptation

'.quadratic integrate-and-fire

(poor)

..integrate-and-fi re-or-burst .FitzHugh-Nag umo
resonate-and-fire

N\

Mﬂrris-Lecar.

olzhikevich (2003) 7. Findmarsh-osey JYIson o

biological plausibility (# of features)

o)

g '22 r

=) 5 13 e Hodgkin-Huxley
(efficient) implementation cost (# of FLOPS) (prohibitive)
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Izhikevich Model

» Two dimensional system of ordinary differential equations

9 — (.04 u(t)? + bu(t) + 140 — r(t) + I
& = albu(t) —r(t))

—

Ifu(t) = 30 mv

r=r+d » 7 isarecovery variable
(Na+ inactivation/K+ activation)
provides negative feedback to u

{u =cC » uisthe membrane potential,

» a,b,c,d are the parameters of the
model

» Iisthe applied current
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Izhikevich Model

» Two dimensional system of ordinary differential equations

v'=0.04v2+5v +140-u +|
u=a(bv -u)

if v=30 mV,
thenv-c, u-u+d

Often in literature:
» visthe membrane potential

» uis the recovery variable
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Neuronal Dynamics

» The behavior of a neuron does not depends only on its
electrophysiological properties

» Two neurons with the same electrophysiological
properties can respond differently to the same input

» Neurons can be thought as dynamical systems

» Dynamical properties of the neurons have a major role
Especially bifurcation dynamics

A bifurcation occurs when a small
change to the parameter values of
a system results in a sudden
qgualitative change in its behavior
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Neuronal Dynamics

» Neurons are excitable because they are near a transition
(bifurcation) between resting and sustained spiking activity

;5 resting excitable periodic spiking
5]
E spike
Q
j= N
g
8 PSP i Ve / / /
@
E t time, t 1 :
stimulus — A B
stimuli
s
e
g =
: eriodic
5 spike P orbit
S| e A b &7
g | Nt
+
X

membrane potential, V

The system is excitable because its equilibrium is near a bifurcation
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Neuronal Dynamics

» Four generic bifurcations

\"'. - ) —
”059/ / saddle saddle node

saddle-node bifurcation

node,* ™

/. /saddle /‘sadale-node /

saddle-node on invariant circle (SNIC) bifurcation

e
0
&

subcritical Andronov-Hopf bifurcation

_ / (
|
G, \o
supercritical Andronov-Hopf bifurcation

43

subthrestold oscillations

co-existance of resting and spiking states

YES NO
(bistable) (monostable)
%‘ ddle-node
O saddle-node on
< E saddle-node invariant circle
[=
ne subcritical supercritical
> 8 | Andronov-Hopf Andronov-Hopf
o

Monostable: the neuron does not
exhibits the presence of resting and
tonic spiking

Resonator: there exist small amplitude
oscillations of membrane potential



Neuronal Dynamics

» Integrators vs Resonators

44



Firing Patterns

» The most fundamental classes of firing patterns are just 6

) inhibitory
excitatory fast spiking (FS) low threshold spiking (LTS)  ggq s late spiking (LS)

regular spiking {RS) chattering (CH)
500 pA 400 phA
175 pA
150 pA
! ] e [ :

intrinsically bursting (1)

Iﬁ-:lrn‘u-'
|

100 ms
00 p

%MJ‘J\JM—LL\_/
mﬁv—J\_J\—J\k

1 I
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Neuro-Computational Features

(A tonic spiking

Inpust do-curment

Hms

(E) mixed moda

]-I LA N A
b e

{I} spike latency

(M) rebound spika

_ﬁ—

{i2) de polarizing
after-potantial

DAP

{B) phasic spiking

{F) &pll‘.ﬂ e quancg.r

—| —

i) subthrashold
DSCI ations

{M} rebound burst

—_

(R) accommodation

(C} tonic bursting

(&) Class 1 excitable

- nn__

A

(5) inl'!il::_u'rtiu-n-inl:lumd

(D) phasic bursting

_ -
(H) Class 2 excitabla

SO L S

(L} intagrator

.Il.
_r B ¥ LR
m_— in

{P) bistability

(T) inhibition-imduced
bursting

20 Most prominent features of
biological spiking neurons

The Izhikevich model can simulate
all of them

Izhikevich’s book — Chapter 8

Papers:
E.M. Izhikevich, "Which model to use for cortical

spiking neurons?." [EEE transactions on neural
networks 15.5 (2004): 1063-1070.

E.M. Izhikevich, "Simple model of spiking
neurons." IEEE Transactions on neural networks
14.6 (2003): 1569-1572.

web:
http://izhikevich.org/publications/whichmod.htm
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Which Model to Use for Cortical Spiking
Neurons?

' integrate-and-fire
. g/ntegrate-and-fire with adaptation
.quad ratic integrate-and-fira

(poar)

integrate-and-fire-or-burst .FiizH ugh-Nagumo

resonate-and-fire
. Morris-Lecar
.

elzhikevich (2003) "7+~ Finmarshios: e 0N .

biological plausibility (# of features)

Blee 7

& 5 13 2 Hodgkin-Huxley

(efficient) implementation cost (# of FLOPS) (prohibitive)
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Models SFETEEFFF S LT EELS F & & & & elops
integrate-and-fire =lF| = === =F]===|=|F]=] = === === 5
integrate-and-fire with adapt. [ = [4 | = | = | = | = | 4|+ | =| =| =|=|+]|=|[ =] =| =|F| =| = =] = 10
integrate-and-fire-or-burst -l 4|+ =] === =|F|+]|+]|=|+|+]|=]|=]|- 13
resonate-and-fire =l F]==|=]=(+|F|=|F|F+|F|F|=]|=|F]|*|+]=|=|+ 10
quadratic integrate-and-fire = || = =| = | = = | 4| = || =|=|+|=|=[F+|+]| =] =| =| =] = 7
‘Izhikevieh{zm} S P O R O ) ) ) ) -

FitzHugh-Nagumo -4+ = == =] =] =+ =]+ =] - 72
Hindmarsh-Rose =+ |+ + + |+ |+ +| H|H(+ |+ |(F |||+ |+ + 120
Morris-Lecar [ =] [ |+ F]F ||| F| ] | F|F] | F[F] |- o0
Wilson - [+ +]|+ | ] ][+ + 180
Hodgkin-Huxley +|+ |+ |+ +|+ |+ || F| || T + |+ + | 1200
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Spiking Neural Networks?

» What happens if we connect spiking
neurons to form a network?

TD BE CLONTINUED

ccccccccccccccccccccccccccc

The Other Half of the Brain
Mounting evidence suggests that glial cells, overlooked for half a century, may be nearly ...see yo uon M on d ay | |

as critical to thinking and learning as neurons are

GENETIC CODE: EVDLYED T0 EVOLVE - CHOICE AR MISERY
HAS SCIENCE MISSED
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