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How to send to us exam material? 
 Email to us (Bacciu, Micheli, Valenza) 
[micheli@di.unipi.it, bacciu@di.unipi.it, g.valenza@iet.unipi.it,] 

 Subject: [CNS-2016] student Rossi exam material 

 Body (email text):  
 Name Surname, email contact 

 Master degree programme (Bionics eng. or Computer Science?) 

 Material attachments (lab source code files,  report for the project or 
slides for the  presentation). 

 Any note you find useful to us 

 

 Deadline: 10 days before the oral exam session (which is fixed 
in the formal Unipi web site for exams) 

 Further details will be discussed during the course 

 

 

20 
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Part 1 

24 

Neuroscience modeling 
 
 Introduction to neurophysiology 
 Neural organization and mapping in the brain 
 Introduction to bio-inspired neural modeling 
 Neural modeling: 

 From perceptron to hodgkin-huxley through Izhikevich, 
 Spiking neural networks,  
 The theory of neural group selection, 
 The role of synaptic delays in a computational brain,  
 Spike-timing dependent plasticity rule,  
 Neural memory,  
 Neural decoding and perception mirror neurons, 
 Modeling neural cell culture dynamics  

 Introduction to glia and astrocyte cells, the role of astrocytes in a computational 
brain, modeling neuron-astrocyte interaction, neuron-astrocyte networks,  

 The role of computational neuroscience in neuro-biology and robotics applications. 
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Neuroscience is the scientific study of the nervous 
system. 

Neuroscience 

Biology 

Medicine 

Enginnering 

Philosophy 

Psychology 



Page § 6 

Computational Neuroscience 

Computational Neuroscience 

Neural Modeling 
and Dynamics Artificial Intelligence 
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Computational Neuroscience 

Computational Neuroscience 

Neural Modeling 
and Dynamics 

Aim: study and definition of 
physiologically plausible 
mathematical models to simulate 
actual neural dynamics 
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Central Nervous System (CNS) 
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Encephalon: Anatomical division 

  Telencephalon    Diencephalon   Mesencephalon    Metencephalon Mielencephalon 
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Superfice Mediale 

The Cerebral Cortex: Functional Division 

Brodmann Areas 
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The Cerebral Cortex (1) 

T h e c e r e b r a l c o r t e x i s 
responsible of many cognitive 
functions such as language, 
memory, emotional processing, 
etc.  Six layers of neurons 
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Modelling	  Neural	  Dynamics	  
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Levels of Modeling 

Brain as a whole 

Specific brain systems (visual system,…) 

Large scale neural networks 

Small neural networks 

Neurons 

Ion channels and synapses 

Molecular processes 

 

Costruire modelli
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Neural Spiking 
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Neural Spiking 
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Particular Neural Dynamics 
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Classificazione di Hodgking
Hodgking classification of neural excitability 

e.g. in cortical pyramidal neurons  e.g. brainstem mesV 
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290 Simple Models
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Figure 8.8: Six most fundamental classes of firing patterns of neocortical neurons in
response to pulses of depolarizing dc-current. RS and IB are in vitro recordings of
pyramidal neurons of layer 5 of primary visual cortex of a rat, CH was recorded in vivo
in cat’s visual cortex (area 17, data provided by D. McCormick). FS was recorded in
vitro in rat’s primary visual cortex, LTS was recorded in vitro in layer 4 or 6 of rat’s
barrel cortex (data provided by B. Connors). LS was recorded in layer 1 of rat’s visual
cortex (data provided by S. Hestrin). All recordings are plotted on the same voltage and
time scale, and the data are available on the author’s webpage (www.izhikevich.com).

Six most fundamental classes of 
firing patterns of neocortical 

neurons in response to pulses of 
depolarizing dc-current. RS and IB 
are in vitro recordings of pyramidal 
neurons of layer 5 of primary visual 
cortex of a rat, CH was recorded in 
vivo in cat’s visual cortex. FS was 
recorded in vitro in rat’s primary 

visual cortex, LTS was recorded in 
vitro in layer 4 or 6 of rat’s barrel 

cortex. LS was recorded in layer 1 
of rat’s visual cortex. 

Particular Neural Dynamics in the Neocortex 
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Biologically-Inspired Single-Neuron Simulation 
Single-Neuron simulation 

Benefits 
 
• Can reproduce activity of 
single neurons 
• Can be used to model 
detailed changes (external 
currents or the effect of 
drugs) 

Disadvantages 
 
•  Needs neuron morphology 
(dendritic layout) 
•  Needs information about ion 
channels, synapse position, 
neurotransmitter type 
•  Is slow to calculate for large 
numbers of neurons 

=> Need for simplified neuron models 
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10 
The McCulloch-Pitts neuron (1943) 

Step-wise activation function 

Summation of input (no synaptic weights!) 

-> Birth of artificial neural network (ANN) research 

Modelling	  Neural	  Dynamics	  
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The	  first	  ar*ficial	  
neuron	  
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Modelling	  Neural	  Dynamics	  
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Mul3layered	  
Percep3on	  is	  a	  

universal	  
approximator	  
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Modelling	  Neural	  Dynamics	  
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⎩
⎨
⎧

=
0
1

y
spike	  occurrence	  

spike	  absence	  

From	  neurophysiology	  point	  of	  
view,	  y	  is	  existence	  of	  an	  output	  

spike	  

=y Number	  of	  spikes	  

Time	  frame	  

From	  neurophysiology	  point	  of	  
view,	  y	  is	  firing	  rate	  

Spike	  3ming	  is	  not	  considered	  at	  all!	  

Modelling	  Neural	  Dynamics	  
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31 Other gain functions Other	  thresholding	  func3ons	  
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∫

Spiking	  neuron	  model	  

Spiking	  neural	  networks	  are	  	  
	  	  	  -‐	  biologically	  more	  

plausible,	  
	  	  	  -‐	  computa3onally	  more	  

powerful,	  
	  	  	  -‐	  considerably	  faster	  

	  than	  networks	  of	  the	  second	  
genera3on	  

Modelling	  Neural	  Dynamics	  
Diagrammi di fase
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Hodgkin-Huxley (first biologically-
plausible neural model - 1952) 

Modelling	  Neural	  Dynamics	  

38 Electrophysiology of Neurons

2.3.1 Hodgkin-Huxley equations

One of the most important models in computational neuroscience is the Hodgkin-
Huxley model of the squid giant axon. Using pioneering experimental techniques of
that time, Hodgkin and Huxley (1952) determined that squid axon has three major
currents: voltage-gated persistent K+ current with four activation gates (resulting in
the term n4 in the equation below, where n is the activation variable for K+), voltage-
gated transient Na+ current with three activation gates and one inactivation gate (term
m3h below), and Ohmic leak current, IL, which is carried mostly by Cl° ions. The
complete set of space-clamped Hodgkin-Huxley equations is

C V̇ = I °
I

Kz }| {
ḡKn4(V ° EK) °

I

Naz }| {
ḡNam
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Ø
h
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exp(30°V
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.

These parameters, provided in the original Hodgkin and Huxley paper, correspond to
the membrane potential shifted by approximately 65 mV so that the resting potential
is at V º 0. Hodgkin and Huxley did that for the sake of convenience, but the shift
has led to a lot of confusion over the years. Shifted Nernst equilibrium potentials are

EK = °12 mV ENa = 120 mV , EL = 10.6 mV;

see also Ex. 1. Typical values of maximal conductances are

ḡK = 36 mS/cm2 ḡNa = 120 mS/cm2 , gL = 0.3 mS/cm2.
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Hodgkin-‐Huxley	  model	  

)(4 KKK VvngI −=

)(3
NaNaNa VvhmgI −=

)( leakleakleak VvgI −=
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dt
dv leakNaKexternal )( ++−
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K	  conductance:	   	   	  gK	   	  =	  36 
Na	  conductance:	   	   	  gNa	  	   	  =	  120	  
Leak	  conductance:	  	   	  gleak	   	  =	  0.3	  
Membrane	  Capacitance: 	  C  =	  1	  
K	  equlibrium:	   	   	  VK	   	  =	  12	  
Na	  equlibrium:	   	   	  VNa	   	  =	  -‐115 
Leak	  equlibrium:	   	   	  Vleak	   	  =	  -‐10.6	  
	  
Ini3al	  and	  Rest	  poten3al 	  v0	   	  =	  0	  
Ini3al	  channel	  ac3va3ons 	  m0, n0, h0	  	  =	  0 

Sign	  is	  wrong	  
in	  the	  paper	  
from	  1952!	  
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Electrophysiology of Neurons 41
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Figure 2.15: Action potential in the Hodgkin-Huxley model.

50 Electrophysiology of Neurons

Figure 2.22: Alan Hodgkin (right) and Andrew Huxley (left) in their Plymouth Ma-
rine Lab in 1949 (photo was kindly provided by National Marine Biological Library,
Plymouth, UK).

Review of Important Concepts

• Electrical signals in neurons are carried by Na+, Ca2+, K+, and Cl°

ions, which move through membrane channels according to their
electrochemical gradients.

• Membrane potential V is determined by the membrane conductances
g

i

and corresponding reversal potentials E
i

C V̇ = I °
X

i

g
i

· (V ° E
i

) .

• Neurons are excitable because the conductances depend on the mem-
brane potential and time.

• The most accepted description of kinetics of voltage-sensitive con-
ductances is the Hodgkin-Huxley gate model.

• Voltage-gated activation of inward Na+ or Ca2+ current depolarizes
(increases) the membrane potential.

• Voltage-gated activation of outward K+ or Cl° current hyperpolar-
izes (decreases) the membrane potential.

• An action potential or spike is a brief regenerative depolarization of
the membrane potential followed by its repolarization and possibly
hyperpolarization, as in Fig. 2.16.

Hodgkin-‐Huxley	  model	  
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Hodgkin-Huxley f-I curve 

Rate coding: firing rate response (f) to input current (I), steady state 
 
 
 
 
 
 
 

 

 

 

There is a minimum firing rate (58 Hz) 
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What	  does	  a	  neuron	  do?	  

Voltage	  

Time	  

Input	  

Membrane	  
Poten3al	  

Voltage	  

Time	  

Simplest	  idea	  –	  
an	  Integrator	  



Page § 31 

A	  neuron	  as	  an	  Integrator	  

Voltage	  

Time	  

Input	  current:	   	   	  I 	   	  Spike	  threshold: 	   	  Vthresh 
Membrane	  Capacitance:	   	  C 	   	  Reset	  voltage: 	   	  Vreset 
	  
	  
Membrane	  Voltage:	   	   	   	  if	  v >	  Vthresh	  

	   	   	   	   	  	  	  →v =	  Vreset	  C
I

dt
dv

=

• 	  Firing	  rate	  is	  unlimited	  
• 	  Integra3on	  is	  “perfect”	  

Neuron	  response	  is	  linear	  
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18!

One-Dimensional Reductions!
g Perfect Integrate and Fire Model!

! 

C dV (t)
dt

= I(t)

! 

V t( ) =VThr "Fire+reset 

linear 

threshold 

I(t) 

C 
! 

"(t # ti)$

tref 

V 

Whatʼs missing!
In this model!

compared to HH?!

18!

One-Dimensional Reductions!
g Perfect Integrate and Fire Model!

! 

C dV (t)
dt

= I(t)

! 

V t( ) =VThr "Fire+reset 

linear 

threshold 

I(t) 

C 
! 

"(t # ti)$

tref 

V 

Whatʼs missing!
In this model!

compared to HH?!

A	  neuron	  as	  an	  Integrator	  

20!

One dimensional reductions!
g The successive times, ti, of spike occurrence:!

!
g Firing rate vs. input current of the perfect 

integrator:!

!
g If you force a refractory period Tref following a 

spike, such that V = 0mV for Tref period 
following a spike, then:!

! 

I(t)dt = CVth
ti

ti+1

"

! 

f =
I

CVThr

! 

f =
I

CVThr + tref I
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Leaky	  Integrate	  and	  Fire	  (LIF)	  model	  

Voltage	  

Time	  

Input	  current:	   	   	  I 	   	  Spike	  threshold: 	   	  Vthresh 
Membrane	  Capacitance:	   	  C 	   	  Reset	  poten3al: 	   	  Vreset 

	   	   	   	   	  	  
	  
	  
	  
Membrane	  Voltage:	   	   	   	  if	  v >	  Vthresh	  

	   	   	   	   	  	  	  →v =	  Vreset held	  for	  trefrac	  τ
restVv

C
I

dt
dv −

−=

Res3ng	  poten3al:	   	   	  Vrest 
Membrane	  Time	  Constant:	   	  τ	  
Refractory	  period:	   	   	  trefrac	  

Stein,	  1967	  
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21!

One-dimensional Reductions!
g Leaky Integrate and Fire Model!

! 

V

! 

VThr

Spike emission 

reset 

I(t) 

C 

I(t) 

C 
! 

"(t # ti)$

tref 

! 

C dV (t)
dt

+
V (t)
R

= I(t)

! 

V t( ) =VThr "Fire+reset 

linear 

threshold 

R 

V 

Leaky	  Integrate	  and	  Fire	  (LIF)	  model	  
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Neural Modeling and Dynamics Diagrammi di fase

Neurons as dynamical systems: phase space 
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2!

Recap: Phase Plane Analysis!Exemplary Phase Space Analysis 
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Neural Excitability  

  Excitability is the most fundamental property of neurons allowing communication via action 
potentials or spikes. 

  From mathematical point of view a system is excitable when small perturbations near a rest 
state can cause large excursions for the solution before it returns to the rest.  

  Systems are excitable because they are near bifurcations from rest to oscillatory dynamics.  
  The type of bifurcation determines excitable properties and hence neuro-computational 

features of the brain cells. Revealing these features is the most important goal of 
mathematical neuroscience. 

  The neuron produse spikes periodically when there is a large amplitude limit cycle attractor, 
which may coexist with the quiescent state. 
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Most of the bifurcations discussed here can be illustrated using a two-
dimensional (planar) system of the form 
 
 
 
 
   Much insight into the behavior of such systems can be gained by considering 
their nullclines. 
 the sets determined by the conditions f(x, y) = 0 or g(x, y) = 0.  
   When                nullclines are called fast and slow, respectively. Since the 
language of nullclines is universal in many areas of applied mathematics 
 

),('
),('

yxgy
yxfx

=

=⋅µ
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Bursters  

When neuron activity alternates between a quiescent state and repetitive spiking, the 
neuron activity is said to be bursting. It is usually caused by a slow voltage- or calcium-
dependent process that can modulate fast spiking activity. 

 There are two important bifurcations associated with bursting:   
Bifurcation of a quiescent state that leads to repetitive spiking.  

Bifurcation of a spiking attractor that leads to quiescence.  

 

These bifurcations determine the type of burster and hence its neuro-computational features.   
An example of "fold/

homoclinic" (square-wave) bursting. 
When a slow variable changes, the 
quiescent state disappears via fold 

bifurcation and the periodic spiking 
attractor disappears via saddle 
homoclinic orbit bifurcation  
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DEL  
NEURONE  

Usually they are express in form of 

ODEs (Ordinary Differential Equations)  

Modelling	  Neural	  Dynamics	  

Input Current Input Current 
Membrane Potential 

Reset Value 
5 for 1 ms 

if then 

10 for 1 ms 

Conductance 
Dirac 
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Modelling	  Neural	  Dynamics	  

Threshold 
V Threshold 

Membrane Potential 

7 for 1 ms 

13 for 1 ms 

10 for 1 ms 

72 for 1 ms 

Reset Value 

Heaviside Function 
T-current function 

Recovery variable 
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Modelling	  Neural	  Dynamics	  

120 for 1 ms 180 for 1 ms 

600 for 1 ms 1200 for 1 ms 
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13 for 1 ms 
Recovery 

Membrane Potential 

Then If 

Modelling	  Neural	  Dynamics	  
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Izhikevich	  Model	  
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33!

Izhikevich Model!
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Spike trains 

The Neural Code 

Where is the Information? 

Frequency? 

Spikes? 

Inter/Intra spike interval? 
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13 
The firing rate hypothesis 

Edgar Adrian 
The Nobel Prize in Physiology or Medicine 1932 

Stimulus features are encoded through the neural firing rate  
(response curves).  
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For any  t > 0, each 
interval contains 0,1 spike. 
Then, r(t) averaged over 

trials is"
the probability of any trial 

firing at time t. "
B: 100 ms bins"
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14 
The firing rate hypothesis 

Receptive field: area in the outside/physical  
world for which a neuron is responsive. 
 
Feature preference 
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Necessary conditions for optimal summation:
1) synapses have to be closely adjacent
2) pre-synaptic signals have to arrive simultaneously
3) resting potential and reversal potential(s) have to be very different.

EPSP  = EPSP  + EPSP
r e s A BmV

t

rest.
pot.

A
BA

B
The little “shoulder” shows that the
EPSPs were not truely simultaneous.

Spatial Summation

EPSP  <  EPSP  + EPSP
r e s A B

mV

t

rest.
pot.

AB

A

B

Soma

Dendrite

If the synapses are far from each other the amplitude will be
less at the first summing point. It will then further decay
until reaching the soma.

Consider 1:

simultaneous
inputs !

Summation
point
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15 
The correlation code hypothesis 

From DeCharms and Merzenich 1996 

Stimulus features are 
encoded by neurons firing 
around the same time 
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16 
Integrator or coincidence detector? 

From Buracas et al. 1998 
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Neurons	  communicate	  
via	  exact	  spike	  *ming	  

Firing	  rate	  alone	  does	  not	  
carry	  all	  the	  relevant	  

informa*on	  

The Neural Code 

Necessary conditions for optimal summation:
1) synapses have to be closely adjacent
2) pre-synaptic signals have to arrive simultaneously
3) resting potential and reversal potential(s) have to be very different.

EPSP  = EPSP  + EPSP
r e s A BmV

t

rest.
pot.

A
BA

B
The little “shoulder” shows that the
EPSPs were not truely simultaneous.

Spatial Summation

EPSP  <  EPSP  + EPSP
r e s A B

mV

t

rest.
pot.

AB

A

B

Soma

Dendrite

If the synapses are far from each other the amplitude will be
less at the first summing point. It will then further decay
until reaching the soma.

Consider 1:

simultaneous
inputs !

Summation
point

A

B

Consider 2: If the signals are not simultaneous then the sum will be smaller

mV

t

rest.
pot.

A B

The early signal (A) facilitates the later signal (B). Together the firing threshold
might be reached but not alone.

Temporal Summation

If the difference in arrival times is 
too large, temporal summation 
does not occur anymore !

mV

t

rest.
pot.

A B
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Edelman (Nobel laureate in Medicine) 
proposed the theory of neuronal 
group selection (TNGS), also known 
as Neural Darwinism, 

The Neural Code 

Edelman stated that DNA does not 
contain all information needed to code 
all brain connections. 
DNA provides basic species-related 
information exclusively. 

Living and dead cells are regulated 
by stochastic rules, therefore each 
brain is different from each other. Indeed, in the human brain there are 

1011 neurons, with 1015 synapses. 
DNA has 109 pairs of nucleotides 
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Neural Groups should be considered 
as the basic processing unit of the 
brain 

The Neural Code 

How to model Neural 
Groups in a Spiking Neural 
Network? 

Time must be taken into 
account 

Neural Groups are characterized by: 
 
-  Biological Selection (DNA) 
-  Experiential Selection 
-  Reentry 
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Spiking neural network 

The network consists of cortical spiking 
neurons with axonal conduction delays and 
spike timing-dependent plasticity (STDP). 

 

The network is sparse with 0.1 probability of 
connection between any two neurons. 

 

Neurons are connected to each other 
randomly 

Synaptic connections among neurons have 
fixed conduction delays, which are random 
integers between 1 ms and 20 ms. 
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STDP rule (spike-timing-dependent plasticity) 

Initially, all synaptic connections have equal weights. 

The magnitude of change of synaptic weight 

depends on the timing of spikes. 
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STDP rule (spike-timing-dependent plasticity) 

If the presynaptic spike arrives at the postsynaptic neuron before the 
postsynaptic neuron fires—for example, it causes the firing—the 
synapse is potentiated. 

 

If the presynaptic spike arrives at the postsynaptic neuron after it fired, that 
is, it brings the news late, the synapse is depressed.  
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delta waves (<4 Hz) 

Spiking neural network 
Inizialmente, tutte le connessioni hanno gli stessi pesi e la rete impiega diverso tempo 
per stabilizzarsi attraverso il potenziamento e la depressione dei pesi sinaptici. In un 
primo periodo quindi, la rete presenta un'attività ritmica di ampiezza elevata in un intorno 
di frequenza di circa 4Hz (onde delta). Questi ritmi somigliano ad uno dei quattro tipi di 
onde fondamentali del cervello chiamato onde di sonno profondo, perchè avvengono 
durante la fase del sonno senza sogni, nei neonati e in alcune malattie mentali. Queste 
tipologie di onde nei mammiferi derivano dal funzionamento del talamo che nel modello 
è simulato esclusivamente da un input regolare ogni millisecondo.

Addestramento: presenza di un ritmo di spiking

First Seconds of Simulation Polychronization 253
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Figure 5: Rhythmic activity of the spiking model is evident from the spike
raster. As synaptic weights are evolved according to STDP, initial delta fre-
quency oscillations (top, sec = 1) disappear, relatively uncorrelated Poissonian
activity (middle, sec = 100), and then gamma frequency oscillations (bottom,
sec = 3600) appear.
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Polychronization 253
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Spiking neural network 

First Minutes 
 of Simulation 

Caso di rete connessa casualmente:
pulse-coupled neural network (PCNN)

1000 neuroni:

800 eccitatori (RS e CH)
200 inibitori (FS)

I pesi delle connessioni 
sinaptiche fra i neuroni 

sono date da una matrice S 
cosicché il firing del j- esimo 

neurone viene pesato 
istantaneamente e 

selettivamente in ingresso 
ad ogni neurone 
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Polychronous Neural Group (PNG) 
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Characteristics of polychronous groups  

The groups have different  

Sizes 

Lengths 

Time spans 
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Representations of Memories and Experience 

Persistent stimulation of the network with two spatio-temporal patterns result in 
emergence of polychronous groups that represent the patterns. the groups activate 
whenever the patterns are present. 
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Spike-Timing Theory of Working Memory  

and both PNGs are simultaneously kept in WM for many seconds.
The model can hold several items in WM but eventually its
performance deteriorates with increased load (note the sub-linear
histogram in Figure 5B).

Novel Stimulus - Working Memory Expands Memory
Content

To demonstrate that a novel cue can be loaded and kept in
WM, we stimulated the network with a novel spike-timing pattern
repeatedly every 15 seconds (Figure 6). Notice that this spiking
pattern — triggered by the novel external cue — did not
correspond to any of the existing PNGs’ firing pattern. Each time
the new pattern is presented to the network, the synapses between
the stimulated neurons that fire with the appropriate order are
potentiated due to long-term STDP. In addition, synapses to
some other post-synaptic neurons that were firing by chance and
have synaptic connections with converging conduction delays
that support appropriate spike timing, are also potentiated [19].
Thus, the expansion of the network’s memory content, i.e., the
formation of a new PNG representing the novel cue, occurs via
the interplay of long-term STDP and repeated firing of neurons
with the right spatiotemporal pattern. This pattern can be
triggered by stimulation (as shown in [19]), or it could result from
autonomous reactivations due to WM mechanism (as shown in
Figure 6A and 6D). Therefore, the WM mechanism, by
facilitating the reactivations of the new PNG, facilitates the
formation of the new PNG. Despite that the new PNG consists
both of neurons that received (red dots in Figure 6D) and of
neurons that did not receive (marked black in Figure 6D) direct
stimulation during the cue presentations/learning, in order to
load and keep the cue in WM it is sufficient to stimulate those
neurons that were directly stimulated during learning. The
reactivation rate of the new PNG, 4 Hz, is similar to those
observed in Figures 4 and 5.

Discussion

Results of our simulations are robust with respect to the mechanisms
of associative short-term change of synaptic efficacies and to parameters
of the model, such as short-term synaptic decay time constants (see
Figures 4 and 5; and Figure S1); probability of random synaptic inputs;
or choice of the target PNGs (Figure 4 and 5; see also Figures S3 and S4,
where we replicate the results of Figures 4 and 5 using PNGs that
were manually generated and inserted in the network (see Methods)).

The underlying currency of information in the theory presented
here is the activation of a PNG. This, combined with an associative
form of short-term changes of synaptic efficacies results in
spontaneously emerging WM functionality: short-term synaptic
changes bias the competition between PNG reactivations, and give
rise to frequent spontaneous reactivations of the selected PNGs
(relative to the reactivation rate of the other PNGs), which are
expressed as short polychronous events with preserved intra-PNG
spike-timings. The simulations result in a network with large
memory content, and produce neural activity consistent with those
observed experimentally [1,3]. Our theory predicts that polychronous
structures are essential for cognitive functions like WM, and such
structures may be the basis for complex activity patterns observed in
neocortical assemblies [42] and for memory replays involving, for
example, prefrontal cortex, visual cortex, and hippocampus [43–
45]. Additionally, this theory makes a testable prediction that
changes in functional connectivity (as in Figures 4D and 5D) should
be observed experimentally in vivo during WM tasks.

Methods

Neuron Model
We use a model of spiking neurons [32,46] that was developed

to satisfy two requirements: It is computational simple and efficient
to implement in large-scale simulations, and it exhibits most of the
types of the firing patterns recorded in animals in vitro and in vivo.

Figure 5. Multiple overlapping polychronous neuronal groups in working memory. (A) Spike raster and firing rate plots as in Figure 4. The
first, red target PNG (tPNG) is activated at time 0 seconds; the second, black tPNG at time 5 seconds. The two PNGs co-exist in WM even though they
share more than 25% or their neurons, which fire with different polychronous patterns. (B) Capacity tested by multiple items in WM. (C) Magnified
plot of the spike rasters (red/black dots) of partial activation of the two tPNGs — red (left) and the black (right). Notation as in Figure 4B. (D) Red, left:
cross-correlograms of two neurons that are part of the red but not the black PNG, when only the red PNG is in WM (1ƒtv5 sec). Black, middle: cross-
correlograms of neurons that are part of the black but not the red PNG, when only the black PNG is in WM (spike raster not shown). Right: cross-
correlograms of two neurons, one from each target PNG, when both PNGs are in WM (t§6 sec).
doi:10.1371/journal.pcbi.1000879.g005

Spike-Timing Theory of Working Memory

PLoS Computational Biology | www.ploscompbiol.org 6 August 2010 | Volume 6 | Issue 8 | e1000879

Working memory (WM) provides temporary, storage and manipulation of 
information necessary for cognition. Using simulations, Szatmary et al (2010) 

show that large memory content and WM functionality emerge spontaneously if 
we take the spike-timing nature of neuronal processing into account. Here, 

memories are represented by extensively overlapping groups of neurons that 
exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called 

polychronous patterns 
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Simulation of Large-Scale Brain Models 

In 2005 Izhikevich finished simulation of a model that 
has the size of the human brain. The model has 

100,000,000,000 neurons (hundred billion or 10^11) 
and almost 1,000,000,000,000,000 (one quadrillion or 

10^15) synapses.  
It represents 300x300 mm^2 of mammalian thalamo-
cortical surface, specific, non-specific, and reticular 

thalamic nuclei, and spiking neurons with firing 
properties corresponding to those  recorded in the 

mammalian brain.  
 

The model exhibited alpha and gamma rhythms, 
moving clusters of neurons in up- and down-states, and 

other interesting phenomena 
  

One second of simulation took 50 days on a beowulf 
cluster of 27 processors (3GHz each). 
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Simulation of Large-Scale Brain Models 
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Simulation of Large-Scale Brain Models 
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A	  stochas3ch	  version	  of	  Izhichevich	  Model	  

If v>=30  
then {c -> v, u -> u+d  

Persistent Bursting Activity! 


