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Stochastic Networks and Neurons .
Introduction

Deterministic Networks

Consider the model introduced so far

@ Neuron is a of its inputs
@ Recurrent network of
@ Learns to encode
V= v
What models do we obtain if we
mapping?
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Stochastic Networks

@ A network of units whose activation is determined by a

e The state of a unit at a given timestep is from a
given

e The network learns a probability distribution P(V) from the
training patterns

@ Network includes both
v and h units

@ Network activity is a
sample from

(visible data)
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Neural Sampling Hypothesis

The can be sampled from the

@ No distinction between and
@ Natural way to deal with
@ Stochastic nature of activation is coherent with

° activity can be explained in terms of
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Probability and Statistics Refresher

On the blackboard ]
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Stochastic Neurons

Stochastic Binary Neurons

@ Spiking point neuron with S;
@ Typically model with time into small At
intervals

@ At each time interval(t +1 = t + At), the neuron can

(v _ [ 1. with probability p"
0, with probability 1 p{"

The key is in the definition of the spiking probability (need to be
a function of )

B = a(x")
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Stochastic Neurons

General Sigmoidal Stochastic Binary Network

Network of N neurons with binary activation s;
@ Weight matrix M = [M,-j],-je{1 ..... N}
@ Bias vector b = [bjljeqy,...,

Local neuron deflned as usual

X ZM,,S + b
i=1

A chosen neuron fires with spiking probability

1 1
pj(t+1) _ _ a(xj(H )) -— 1
1+e %

Formulation highlights
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Stochastic Neurons

Neurobiological Foundations

@ Variability in in synaptic vescicles ~
Gaussian Distribution (Katz 1954)
@ Assuming distributions and of

synaptic connections
= Central limit theorem
= Local (membrane) potential ~ Gaussian
Distribution
@ Conditional is a Gaussian
CDF =~ scaled



Stochastic Networks and Neurons

Stochastic Neurons

Network Dynamics (I)

How does the network state (activation of all neurons) evolve in J
time?

Assume neurons to be updated in parallel every At (

)

N
P(s(t+1)|s(t H P( (t+1)|s T(s(t+1)|s(f))
j=1

Yielding a for state update

Psit) =¢') =Y " T(s'|s)P(s!) = s)
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Stochastic Neurons

Network Dynamics (ll)

@ Parallel dynamics assumes a synchronization clock exist
(biologically non plausible)
@ Alternatively, one neuron at random can be chosen for
update at each step ( )
@ No fixed-point guarantees for s but it has a
for the network at equilibrium state when its

Given F; as state flip operator for j-th neuron s(+1) = F;s(¥
1 1
T(sV1s) = HP(s s
While if s(+1) = (0
T(st*D[s®) =1 - Z P(s{"Vsh



Boltzmann Machine

The Boltzmann-Gibbs Distribution

Symmetric connectivity enforces
P(s)T(s'|s) = P(s')T(sls')

Ensures reversible transitions guaranteeing existence of

equilibrium ( ) distribution
e E(s)
POO(S) - Z
where
@ E(s)isthe function

0 7= Z e E() s the function
S
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Boltzmann Machines

A
where binary unit states are also

@ visiblev € {0,1}
@ latenth € {0,1}
@ s = [vh]
Boltzmann-Gibbs distribution having

v

E(S) = —% Z M,'jS,'Sj — Z bij = —%STMS — bTS
ff J

with connectivity



Learning

Boltzmann Machine el WD

Ackley, Hinton and Sejnowski (1985)

Boltzmann machines can be trained so that the equilibrium
distribution tends towards
given samples from that distribution

A couple of simplifications to start with
@ Bias b absorbed into weight matrix M
@ Consider s=V
Use probabilistic learning techniques to fit the parameters, i.e.

L

Z log P(v'|M)

given the P visible training patterns v’
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Gradient Approach

@ First, the gradient for a single pattern

OP(viM
with (vivj) = ZP A7

@ Then, the log-likelihood grad|ent

oL

('3_/\/7:7 = —(ViVj) + (ViVj)c

with (Vivj)e

N M‘o
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Something we have already seen..

Itis again!

(Vivi)e — (Viv})
—_——

wake dream

° part is the usual Hebb rule applied to the empirical
distribution of data that the machine sees coming in from
the outside world

° part is an concerning correlation
between units when of
the machine

Can only capture quadratic correlation! J
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Learning with Hidden Units

@ To efficiently capture higher-order correlations we need to
h

@ Again (s = [vh])
8P VlM) Zs,sj (hjv) = > sis;P(s)

= <3i3j>c — (sisj)

@ Expectations generally become due to the
(exponential complexity)
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Boltzmann Mean-field Approximation

@ Approximate the expectations using a simpler distribution

than P(s)
N

Qs) =[] m>(1 — my)*
i=1
@ New parameter m; describing the
, that are chosen to minimize

m* = arg m"i‘n KL[Q(s)||P(s)]
@ The solution is obtained by the
m; = U(Z M,-jmj)
J
@ The m;’s allow to the intractable expectations

<S,'Sj> ~ m,-m,-
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Restricted Boltzmann Machines (RBM)

A special Boltzmann machine
° graph
@ Connections only between

° function, highlighting bipartition in hidden (h) and
visible (v) units

E(v,h)=—v'Mh—b’v—c’h

@ Learning (and inference) due to graph
bipartition which
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The RBM Catch

Hidden units are conditionally independent given visible units,
and viceversa

P(hjlv) = G(Z Mjvi + ¢))

P(vilh) = () M;h; + b))
j

They can be updated in batch! J
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Restricted Boltzmann Machine

Training Restricted Boltzmann Machines

Again by likelihood maximization, yields

data model
A approach
Dream
Wake @ Don’t clamp units

@ Clamp dataonv @ Let network reach
@ Sample v;h; for all pairs of equilibrium

connected units @ Sample v;h; for all pairs of
@ Repeat for all elements of connected units

dataset @ Repeat many times to get

a good estimate



Boltzmann Machine

Gibbs-Sampling RBM

Restricted Boltzmann Machine

oL
8_/\/1,'/':<vihj>c_w
data model
h (000  [000]
7N /N /. N\
v(0oO] [000] (000
t=0 t=1 t=2 t - oo

It is difficult to of the second term J
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Gibbs-Sampling RBM

Restricted Boltzmann Machine

Plugging-in Data

(000 000],,,, [ (l600]
)y 7 Ny \ /... N e

v/00o0o| [(000] [000]

t=0 t=1 t=2 t—> o

@ Start with a units

(2] between updating all the hidden units in parallel
and updating all the visible units in parallel ( )

= (Vihj)o — (Vihj) o
—_—  ——

data model

oM,
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Contrastive-Divergence Learning

Gibbs sampling can be painfully slow to converge

@ Clamp a training vector v/

on
h (000 000 @ Update units in
k), /7 N/ (vihy), parallel
vjooo| (000 © Update the all visible units
t=0 r=1 in parallel to get a
data reconstruction

© Update the hidden units
again
(Vihp)o —  (Vihj)1
N—— ~——

data
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What does Contrastive Divergence Learn?

@ Avery of the gradient of the

o It does not even follow the gradient closely

° the gradient of a objective
function called the
e ltignores one tricky term in this objective function so it is
not even following that gradient

@ Sutskever and Tieleman (2010) have shown that it is



Boltzmann Machine

So Why Using it?

Restricted Boltzmann Machine

Because e says so!

It works well enough in many significant applications



Applications

Conclusions

Character Recognition

Learning good features for reconstructing images of number 2
handwriting

50 binary
feature
neurons

Increment weights
between an active pixel/
and an active feature \ / Decrement

weights between

[OOO} [OOO] an active pixel

and an active

- feature
X,

16x16

. Reconstructed
binary .
. image
image

Slide credit goes to G. Hinton
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Weight Learning
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Final Weights
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Digit Reconstruction

5 20 ) S P P e
o |
AR AR R

/' Wen features
= ! data 1
L reconstruction i Im




Applications
Summary

Conclusions

Digit Reconstruction (lI)

What would happen if we supply the RBM with a test digit that it
isnota 2?

It will try anyway to see a 2 in whatever we supply!



Conclusions

Applications

One Last Final Reason for Introducing RBM

Deep Belief Network

Classifier/Regressor

The fundamental building
block for one of the most
popular deep learning
architectures

A network of
trained layer-wise
by
plus a
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Take Home Messages

° as a paradigm that can
in terms of distributions

@ Boltzmann Machines

° neurons required to explain high-order correlations

e Training is a mix of

e Multifaceted nature (recurrent network, undirected

graphical model and energy-based network)

@ Restricted Boltzmann Machines

e Tractable model thanks to
e Trained by a very short Gibbs sampling (

e Can be very powerful if (deep learning)
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Next Lecture

@ Part | - Lecture (1h)
° in competitive networks
o Stability-plasticity
o Adaptive Resonance Theory (ART)

@ Part Il - Lab (2h)

e Restricted Boltzmann Machines
e | suggest you have a good look at reference [1] on the
course wiki (pages 3 — 6)
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