magistraleinformatica:ad:ad_22:start
Differenze
Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.
Entrambe le parti precedenti la revisioneRevisione precedenteProssima revisione | Revisione precedente | ||
magistraleinformatica:ad:ad_22:start [24/02/2023 alle 11:33 (2 anni fa)] – Roberto Grossi | magistraleinformatica:ad:ad_22:start [03/07/2023 alle 12:07 (24 mesi fa)] (versione attuale) – Roberto Grossi | ||
---|---|---|---|
Linea 9: | Linea 9: | ||
* The course will start on Feb. 22, 2023. | * The course will start on Feb. 22, 2023. | ||
- | ==== Schedule ==== | + | ==== Schedule |
* Class hours: Mon 09‑11 (Fib-X1), Wed 09‑11 (Fib-L1), Fri 11-13 (Fib-L1) | * Class hours: Mon 09‑11 (Fib-X1), Wed 09‑11 (Fib-L1), Fri 11-13 (Fib-L1) | ||
Linea 47: | Linea 47: | ||
- | | **Date** | **Day** | + | ^ Date ^ Topics ^ References and notes ^ |
- | | 02/22/2023 | Wed | lecture | + | |22.02.2023 |
- | | 02/24/2023 | Fri | lecture | + | |24.02.2023| Playing with probability. Random indicator variables: secretary problem and random permuting (suggested reading: birthday paradox). Randomized quick sort. | [CLRS 5.1-5.3 (optional 5.4.1), {{: |
+ | |27.02.2023| Virus scan and stream analysis with Karp-Rabin fingerprints: | ||
+ | |01.03.2023| Universal hashing. Markov' | ||
+ | |03.03.2023 | Weekly hands-on. | see Teams drive | | ||
+ | |06.03.2023 | ||
+ | |08.03.2023 | Nash equilibrium. Review of example strategic games. Nash equilibrium of stag hunt with n players. Best response. Using best response to find the Nash equilibrium. (F. Geraci) | ||
+ | |10.03.2023 | Weekly hands-on. (F. Geraci) | see Teams drive | | ||
+ | |13.03.2023 | Game Theory. Improving and best response. Dominated actions. Vickrey auction (aka second price auction). Expected payoffs. (F. Geraci) | see Teams drive | | ||
+ | |15.03.2023 | Mixed strategy Nash equilibrium. Example: matching penny. Example: kicking penalty. Stable matching. (F. Geraci) | see Teams drive | | ||
+ | |17.03.2023 | Weekly hands-on. (F. Geraci) | see Teams drive | | ||
+ | |20.03.2023| Worst-case constant-time lookup: Cuckoo hashing. | {{: | ||
+ | |22.03.2023| Proxy caches and dictionaries with errors: Bloom filters. | ||
+ | |24.03.2023 | Weekly hands-on. | see Teams drive | | ||
+ | |27.03.2023| Space-efficient storage of sets with approximate memberships: | ||
+ | |29.03.2023| Distributed server and load balancing through hashing. | [[https:// | ||
+ | |31.03.2023 | Weekly hands-on. | see Teams drive | | ||
+ | |03.04.2023| Document resemblance with MinHash, k-sketches | ||
+ | |05.04.2023| Count-Min sketches for frequent elements.| {{http:// | ||
+ | |14.04.2023 | Weekly hands-on. | see Teams drive | | ||
+ | |17.04.2023 | The data stream model. Cardinality estimation. Linear counting. LogLog counters. (F. Geraci) | see Teams drive | | ||
+ | |19.04.2023 | Bloom filters (probabilistic deletion and counting). Count min sketch. Heavy hitters. The space saving algorithm. (F. Geraci) | see Teams drive | | ||
+ | |21.04.2023 | Weekly hands-on. (F. Geraci) | see Teams drive | | ||
+ | |24.04.2023| Networked data and randomized min-cut algorithm for graphs. | {{: | ||
+ | |26.04.2023| Approximation in fine-grained algorithms and limitations. Case study: diameter in undirected unweighted graphs. | {{ : | ||
+ | |03.05.2023| Fine-grained algorithms. SETH conjecture and conditional lower bounds. Guaranteed heuristics. Case study: diameter in undirected unweighted graphs. | [[https:// | ||
+ | |08.05.2023| Fixed-parameter tractable (FPT) algorithms. Kernelization. Bounded search tree. Case study: min-vertex cover in graphs. | ||
+ | |10.05.2023| Randomized FPT algorithms: color coding and randomized separation. Case study: longest path in graphs and subgraph isomorphism. | [[https:// | ||
+ | |12.05.2023| Local search, Greedy, Randomized: case study of max cut for graphs. | {{: | ||
+ | |15.05.2023| NP-hard problems: download file manager and the knapsack problem. Dynamic programming algorithms for Knapsack: Case 1: integer weights, complexity O(nW). Case 2: integer values, complexity O(n< | ||
+ | |17.05.2023| NP-hard problems: fully polynomial-time randomized approximation schemes (FPRASs). Case study: #knapsack problem. | {{ : |
magistraleinformatica/ad/ad_22/start.1677238432.txt.gz · Ultima modifica: 24/02/2023 alle 11:33 (2 anni fa) da Roberto Grossi