Strumenti Utente

Strumenti Sito


dm:start

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
dm:start [05/05/2025 alle 10:00 (7 mesi fa)] – [Second Semester (DM2 - Data Mining: Advanced Topics and Applications)] Riccardo Guidottidm:start [01/12/2025 alle 10:55 (12 giorni fa)] (versione attuale) – [News] Riccardo Guidotti
Linea 1: Linea 1:
-====== Data Mining A.A. 2024/25 ======+====== Data Mining A.A. 2025/26 ======
  
 ===== DM1 - Data Mining: Foundations (6 CFU) ===== ===== DM1 - Data Mining: Foundations (6 CFU) =====
Linea 15: Linea 15:
  
 Teaching Assistant Teaching Assistant
-  * **Andrea Fedele**+  * **Alessio Cascione**
     * KDDLab, Università di Pisa     * KDDLab, Università di Pisa
-    * [[https://www.linkedin.com/in/andrea-fedele/?originalSubdomain=it]] +    * [[https://www.linkedin.com/in/alessio-cascione-a77224159/?originalSubdomain=it]] 
-    * [[andrea.fedele@phd.unipi.it]]  +    * [[alessio.cascione@phd.unipi.it]]   
 ===== DM2 - Data Mining: Advanced Topics and Applications (6 CFU) ===== ===== DM2 - Data Mining: Advanced Topics and Applications (6 CFU) =====
  
Linea 28: Linea 29:
  
 Teaching Assistant Teaching Assistant
-  * **Andrea Fedele**+  * **Alessio Cascione**
     * KDDLab, Università di Pisa     * KDDLab, Università di Pisa
-    * [[https://www.linkedin.com/in/andrea-fedele/?originalSubdomain=it]] +    * [[https://www.linkedin.com/in/alessio-cascione-a77224159/?originalSubdomain=it]] 
-    * [[andrea.fedele@phd.unipi.it]]   +    * [[alessio.cascione@phd.unipi.it]]   
-    * Meeting: https://calendly.com/andreafedele/+
 ====== News ====== ====== News ======
-     * **[11.03.2025]** The lecture of DM2 planned for the 14/03/2025 will be held in Room C instead of in Room E    +     * **[01.12.2025] The lecture of Thursday 04/12/2025 is moved to Friday 05/12/2025 9-11 in room C (project presentation of Prof.ssa Pierotti will start at 11 after DM lecture). The last lecture will be held on Tuesday 09/12/2025 9-11 in room M1 (as Monday 08/12/2025 is holiday), while the lecture of P4DS is moved to 09/12/2025 16-18 in room C1**
-     *[04.03.2025]The sixth lecture of DM2 planned for the 04/03/2025 will be in Room C instead of in Room E.     +     * [19.11.2025] The lecture of Thursday 20/11/2025 will be held in room N1 due to not usability of room E.  
-     * [27.01.2025] The first lecture of DM2 will be held the 18.02.2025 in Room A1 exchanging with S4DS that will be held the 17.02.2025 in Room E    +     * [07.10.2025] The lecture of Thursday 10/10/2025 is canceled due to the UniPi Orienta eventThe recovery lecture is Tuesday 14/10/2025 9-11 room M1.  
-     * [07.01.2025] Exams Registration Instructions for DM1 (second term):  +     * [06.10.2025] Link to Project Groups Registration DM1 [25/26(max 3 students for each group access with your University of Pisa accountdeadline 17/10/2025:)  [[https://docs.google.com/spreadsheets/d/1JX3VRwcZZFcTdpiguEwPsR_p4gDyRd7J89O84J7AeyY/edit?gid=0#gid=0Link]] 
-        - Use the Google registration form: [[https://forms.gle/NuAvCa3YK2h8MgrX7|here]] before the 23/01/2025.  +     * [28.07.2025] Lectures will start on Monday 29 September 2025 at 09.00 room E. Lectures will be in presence only. Registrations of the lectures of past years can be found at the bottom of this web page. 
-        When the registration closes you will receive a link to the Agenda +     
-        - Register on the Agenda selecting day and time (do not change you choice or cancelif you book you want to do the exam) +      
-        - Submit the project at least 1 week before the day you selected in the Agenda. + 
-     * [03.12.2024] This year' lectures available at [[https://unipiit-my.sharepoint.com/:f:/g/personal/a_fedele7_studenti_unipi_it/Er7vET5iUWtGhScjXe7XzHUBDd3aYv8j87VYil6moFVyzw|link]] +---- 
-     * [07.09.2024] Past years' lectures available at [[https://unipiit-my.sharepoint.com/:f:/g/personal/a_fedele7_studenti_unipi_it/EkecHQpnojVLqX0OqTlfrbMBBRMFbIJfNCw_RdFPN2276g?e=Y2uIcu|link]] +
-     * [02.09.2024] Lectures will start on Monday 30 September 2024 at 11.00 room C1. +
-     * [02.09.2024] Lectures will be in presence only. Registrations of the lectures of past years can be found at the bottom of this web page. +
-     * [02.09.2024] Project Groups [[https://docs.google.com/spreadsheets/d/1RFWIwKM5Myaehh4tHceaf3olMYm_CktGvoNOFX2Oovc/edit?usp=sharing|link]] +
-     * [11.09.2023] MS Teams [[https://teams.microsoft.com/l/team/19%3AMMVIsw09XAOGOcd8-D8dKmNUO2hKXsFKpgkOoiFnwJM1%40thread.tacv2/conversations?groupId=3f7fd5a7-5c84-4930-92e4-0704013877f2&tenantId=c7456b31-a220-47f5-be52-473828670aa1|link]] +
 ====== Learning Goals ====== ====== Learning Goals ======
   * DM1   * DM1
Linea 74: Linea 71:
  
 ^  Day of Week  ^  Hour  ^  Room  ^  ^  Day of Week  ^  Hour  ^  Room  ^ 
-|  Monday  |  11:00 - 13:00  |  C1   |  +|  Monday  |  09:00 - 11:00  |    |  
-|  Tuesday  |  14:00 - 16:00  |  C1  +|  Thursday  |  09:00 - 11:00  |   
  
 **Office hours - Ricevimento:** **Office hours - Ricevimento:**
  
   * Prof. Pedreschi   * Prof. Pedreschi
-      * TBD +      * Monday 15:00-17:00 or Appointment by email 
-      * Online+      * Room 318 Dept. of Computer Science or MS Teams 
   * Prof. Guidotti   * Prof. Guidotti
       * Thursday 16:00 - 18:00 or Appointment by email       * Thursday 16:00 - 18:00 or Appointment by email
       * Room 363 Dept. of Computer Science or MS Teams       * Room 363 Dept. of Computer Science or MS Teams
 +
 +
 +  * Alessio Cascione
 +      * Google Meet slot - https://calendly.com/alessio-cascione-phd/30min 
 +      * Alternative appointment by email
 +      * I will be out of office from 05/12/2025 to 15/12/2025, checking emails and answering  sporadically. 
  
      
Linea 117: Linea 121:
   * The slides used in the course will be inserted in the calendar after each class. Most of them are part of the slides provided by the textbook's authors [[http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item4|Slides per "Introduction to Data Mining"]].   * The slides used in the course will be inserted in the calendar after each class. Most of them are part of the slides provided by the textbook's authors [[http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item4|Slides per "Introduction to Data Mining"]].
        
 +   
 +===== FAQ =====
  
-  +For the academic year 2025/2026, we make available a document containing **frequently asked questions (FAQs)** about the project at the end of the lecture. 
 +Please consult this document first, as your question may already be answered there. 
 +The FAQ will be updated regularly after each lecture with new relevant questions from students. 
 + 
 +Check the document: 
 +https://docs.google.com/document/d/1OLa02xofxRPj1zUJ7zm_boxL_ZeAFR1HWCB4lgozgz8/edit?usp=sharing 
 + 
 + 
 + 
 +===== Recording past years ===== 
 + 
 +Link to past years recordings (incrementally updated with respect to the current lectures of the course) 
 + 
 +https://unipiit-my.sharepoint.com/:f:/g/personal/a_cascione_studenti_unipi_it/IgCdnqZe6wTKQJR_4yVrXE3gAcmqWHBSxvxW0HtsA596LWQ?e=OCa34K
 ===== Software===== ===== Software=====
  
Linea 130: Linea 149:
   * Didactic Data Mining [[http://matlaspisa.isti.cnr.it:5055/Help| DDMv1]], [[https://kdd.isti.cnr.it/ddm/#/| DDMv2]]    * Didactic Data Mining [[http://matlaspisa.isti.cnr.it:5055/Help| DDMv1]], [[https://kdd.isti.cnr.it/ddm/#/| DDMv2]] 
    
-====== Class Calendar (2024/2025) ======+====== Class Calendar (2025/2026) ======
  
 ===== First Semester (DM1 - Data Mining: Foundations) ===== ===== First Semester (DM1 - Data Mining: Foundations) =====
  
 ^ ^ Day ^ Time ^ Room ^ Topic ^ Material ^ Lecturer ^ ^ ^ Day ^ Time ^ Room ^ Topic ^ Material ^ Lecturer ^
-|   16.09.2024 |          |  | No Lecture |  |  | +|   15.09.2025 |          |  | No Lecture |  |  | 
-|   17.09.2024 | |  | No Lecture |  |  | +|   18.09.2025 | |  | No Lecture |  |  | 
-|   23.09.2024 | |  | No Lecture |  |  | +|   22.09.2025 | |  | No Lecture |  |  | 
-|   24.09.2024 | |  | No Lecture |  |  | +|   25.09.2025 | |  | No Lecture |  |  | 
-|01.| 30.09.2024 11-13 |C1| Overview, Introduction | {{ :dm:00_dm1_introduction_2024_25.pdf | Intro}} | Pedreschi| +|01.| 29.09.2025 09-11 | Overview, Introduction | {{ :dm:00_dm1_introduction_2025_26.pptx.pdf | Intro}} | Pedreschi | 
-|02.| 01.10.2024 14-16 |C1Lab. Introduction to Python | {{ :dm:dm1_lab01_python_basics_2024_25.zip Python Basics}} | Pedreschi| +|02.| 02.10.2025 09-11 The KDD process | {{ :dm:00_dm1_introduction_2025_26.pptx.pdf Intro}} | Pedreschi | 
-|03.| 07.10.2024 11-13 |C1Data Understanding | {{ :dm:01_dm1_data_understanding_2024_25.pdf Data Understanding}} | Pedreschi| +|03.| 06.10.2025 09-11 Introduction to Python | {{:dm:06.10.25_python_basic_2025_lecture_in_class.zip |}} | Pedreschi, Cascione | 
-|04.| 08.10.2023 14-16 |C1| Data Understanding & Preparation | {{ :dm:01_dm1_data_understanding_2024_25.pdf | Data Understanding}}, {{ :dm:02_dm1_data_preparation_2024_25.pdf | Data Preparation}} | Pedreschi| +|   | 09.10.2025 |  |  | No Lecture (UNIPI Orienta) |  |  
-|05.| 14.10.2023 | 11-13 |C1| Data Preparation & Similarity | {{ :dm:02_dm1_data_preparation_2024_25.pdf | Data Preparation}}, {{ :dm:03_dm1_data_similarity_2024_25.pdf | Data Similarity}} | Pedreschi+|04.| 13.10.2025 09-11 | Data Understanding | {{ :dm:01_dm1_data_understanding_2025_26.pdf | Data Understanding }} | Pedreschi | 
-|06.| 15.10.2024 14-16 |C1Lab. Data Understanding | {{ :dm:dm1_lab02_data_understanding.zip | Data Understanding}}| Pedreschi+|05.| 14.10.2025 09-11 | C1 | Data Preparation | {{ :dm:02_dm1_data_preparation_2025_26.pdf | Data Preparation}}, {{ :dm:03_dm1_data_similarity_2025_26.pdf | Data Similarity}} | Guidotti 
-|07.| 21.10.2024 11-13 |C1| Introduction to Clustering, K-Means | {{ :dm:04_dm1_clustering_intro_2024_25.pdf | Intro Clustering}}, {{:dm:05_dm1_kmeans_2024_25.pdf | K-Means }} | Pedreschi+|04.| 16.10.2025 09-11 | Data Understanding Lab| {{ :dm:16.10.25_data_understanding_2025_lecture_in_class.zip |}} | Guidotti, Cascione 
-|08.| 22.10.2024 14-16 |C1| Centroid-based Clustering | {{:dm:05_dm1_kmeans_2024_25.pdf | K-Means }} | Pedreschi+|06.| 20.10.2025 09-11 Data Similarity and Introduction to Clustering | {{ :dm:03_dm1_data_similarity_2025_26.pdf | Data Similarity}}, {{ :dm:04_dm1_clustering_intro_2025_26.pdf | Introduction to Clustering}} | Guidotti 
-|09.| 28.10.2023 | 11-13 |C1| Hierarchical Clustering & Density-based Clustering | {{ :dm:06_dm1_hierarchical_clustering_2024_25.pdf | Hierarchical Clustering}}, {{ :dm:07_dm1_density_based_2024_25.pdf Density-based Clustering}} | Pedreschi+|07.| 23.10.2025 09-11 | Centroid-based Clustering Algorithm | {{ :dm:05_dm1_kmeans_2025_26.pdf | Centroid-based Clustering}} | Guidotti 
-|10.| 29.10.2024 14-16 |C1Lab. Clustering | {{ :dm:dm1_lab03_clustering.zip | Clustering}}| Pedreschi+|08.| 27.10.2025 09-11 | | Hierarchical Clustering Algorithm | {{ :dm:06_dm1_hierarchical_clustering_2025_26.pdf | Hierarchical Clustering}} | Guidotti 
-|11.| 04.11.2024 11-13 |C1Ex. Clustering | {{ :dm:ex1_dm1_clustering_2023_24.pdf ExClustering}}| Guidotti+|09.| 27.10.2025 09-11 Density-based Clustering Algorithm | {{ :dm:07_dm1_density_based_2025_26.pdf Density-based Clustering}} | Guidotti 
-|12.| 05.11.2024 14-16 |C1| Intro Classification & kNN | {{ :dm:08_dm1_classification_intro_2024_25.pdf | Intro Classification}}{{ :dm:09_dm1_knn_2024_25.pdf | kNN}} | Guidotti+|10.|03.11.2025 09-11 | Clustering Lab | {{ :dm:03.11.25_clustering_2025_lecture_in_class.zip |}} | Pedreschi, Cascione 
-|13.| 11.11.2024 11-13 |C1| Naive BayesExercises | {{ :dm:10_dm1_naive_bayes_2024_25.pdf | Naive Bayes}} | Guidotti+|11.|04.11.2025 09-11 | C1 | Classification: Overview and K-Nearest Neighbours | {{ :dm:08_dm1_classification_intro_2024_25.pptx.pdf | Classification Overview }} {{ :dm:09_dm1_knn_2024_25.pptx.pdf | KNN Classifier }} | Pedreschi 
-|14.| 12.11.2024 14-16 |C1Model Evaluation, Lab. Classification (kNN,NB) | {{ :dm:11_dm1_classification_eval_2024_25.pdf | Model Evaluation}}, {{ :dm:dm1_lab04_classification.zip  Classification}} | Guidotti+|12.|06.11.2025 09-11 Classification: Naive Bayes Classifier and Exercises | {{ :dm:10_dm1_naive_bayes_2024_25.pptx.pdf | Naive Bayes }} | Pedreschi 
-|15.| 14.11.2024 9-11 |C1| Decision Tree Classifier | {{ :dm:12_dm1_decision_trees_2024_25.pdf | Decision Tree}} | Guidotti+|13.|10.11.2025 09-11 Classification: Evaluation | {{ :dm:11_dm1_classification_eval_2024_25.pptx.pdf | Model evaluation }} | Pedreschi 
-|16.| 18.11.2024 | 11-13 |C1| Decision Tree Classifier {{ :dm:12_dm1_decision_trees_2024_25.pdf Decision Tree}} | Guidotti+|14.|13.11.2025 09-11 | Classification: Decision Trees (1) | {{ :dm:12_dm1_decision_trees_2024_25.pptx.pdf | Decision trees }} | Pedreschi 
-|17.| 19.11.2024 14-16 |C1| Decision Tree Classifier {{ :dm:12_dm1_decision_trees_2024_25.pdf Decision Tree}} | Guidotti+|15.|17.11.2025 09-11 | D5 Classification: Decision Trees (2)  Pedreschi 
-|18.| 21.11.2024 9-11 |C1Decision Tree Classifier Exercises and Lab | {{ :dm:12_dm1_decision_trees_2024_25.pdf | Decision Tree}}, {{ :dm:dm1_lab04_classification.zip  Classification}} | Guidotti| +|16.|18.11.2025 09-11 | C1 | Classification: Decision Trees (3)  Pedreschi 
-|19.| 25.11.2024 | 11-13 |C1Regression & Lab. Regression | {{ :dm:13_dm1_linear_regression_2024_25.pdf Regression}}, {{ :dm:dm1_lab05_regression.zip | Regression}}, {{ :dm:dm1_2425_imdb_rating.zip IMDb Rating}} | Guidotti+|17.|20.11.2025 09-11 | N1 Classification Lab | {{ :dm:20.11.25_classification_2025_lecture_in_class.zip |}} | Guidotti, Cascione 
-|20.| 26.11.2024 14-16 |C1Into Pattern Mining and Apriori | {{ :dm:14_dm1_pattern_mining_2024_25.pdf Pattern Mining}} | Pedreschi| +|18.|24.11.2025 09-11 | Pattern MiningApriori | {{ :dm:14_dm1_pattern_mining_2024_25.pptx.pdf Pattern mining & association rules }} | Pedreschi 
-|21.| 28.11.2024 9-11 |C1Apriori & FP-Growth | {{ :dm:14_dm1_pattern_mining_2024_25.pdf | Pattern Mining}} | Guidotti+|19.|25.11.2025 09-11 | Pattern Mining: Lift, Interest, Multiattribute  | Pedreschi | 
-|22.| 02.12.2024 | 11-13 |C1| LabPattern Mining & Exercises | {{ :dm:14_dm1_pattern_mining_2024_25.pdf Pattern Mining}}, {{ :dm:dm1_lab06_pattern_mining.zip | Pattern Mining}}  | Guidotti| +|20.|27.11.2025 09-11 | Regression: Problem, Linear, KNN, Decision Tree | {{ :dm:13_dm1_linear_regression_2024_25.pptx.pdf | Regression }} | Pedreschi 
-|23.| 03.12.2024 | 14-16 |C1| Rule-based Classifiers | {{ :dm:15_dm1_rule_based_classifier_2024_25.pdf | Rule-based Classifiers}}  | Guidotti| +|21.|01.12.2025 09-11 | | Lab on Regression and Pattern Mining; FPGROWTH| {{ :dm:01.12.25_regression_2025_lecture_in_class.zip |}}, {{ :dm:01.12.25_pattern_mining_2025_lecture_in_class.zip |}}{{ :dm:14_dm1_pattern_mining_2024_25.pptx.pdf | FPGROWTH }}| Guidotti, Cascione 
-|24.| 05.12.2024 | 9-11 |C1| FP-Growth Exercises & Project Discussion     | Guidotti|+ 
 ===== Second Semester (DM2 - Data Mining: Advanced Topics and Applications) ===== ===== Second Semester (DM2 - Data Mining: Advanced Topics and Applications) =====
  
 ^ ^ Day ^ Time ^ Room ^ Topic ^ Material ^ Lecturer ^ ^ ^ Day ^ Time ^ Room ^ Topic ^ Material ^ Lecturer ^
-|01.| 18.02.2025 | 14-16 |A1| Overview, Imbalanced Learning | {{ :dm:16_dm2_intro_2024_25.pdf | Introduction}}, {{ :dm:dm2_project_guidelines_24_25.pdf | Guidelines}}, {{ :dm:17_dm2_imbalanced_learning_2024_25.pdf | Imbalanced Learning}} | Guidotti| +|01.| 18.02.2025 | 14-16 |A1| Overview, Imbalanced Learning | {{ :dm:16_dm2_intro_2024_25.pdf | Introduction}}, {{ :dm:dm2_project_guidelines_24_25.pdf | Guidelines}}, {{ :dm:17_dm2_imbalanced_learning_2024_25.pdf | Imbalanced Learning}}, [[https://unipiit.sharepoint.com/:v:/s/a__td_64992/EWrX2F6xAS9JtNXh1l5JIgMByAU0eMWBFr5sbGIYL3jakA|Link]] | Guidotti| 
-|02.| 19.02.2025 | 09-11 |E| Dimensionality Reduction (OverviewRandom, PCA) | {{ :dm:18_dm2_dimred_2024_25.pdf | Dimensionality Reduction}}, {{ :dm:dm2_lab01_imbalance.zip | LabImbLearn}}, {{ :dm:dm2_lab02_dimred.zip LabDimRed}} | Guidotti| +
-|03.| 24.02.2025 | 14-16 |E| Dimensionality Reduction (MDS, tSNE), Outlier Detection (Overview) | {{ :dm:19_dm2_anomaly_detection_2024_25.pdf | Outlier Detection}} | Guidotti| +
-|04.| 26.02.2025 | 09-11 |E| Outlier Detection (Methods) | {{ :dm:19_dm2_anomaly_detection_2024_25.pdf | Outlier Detection}}, {{ :dm:dm2_lab03_outlier_det.zip |LabOutDet}}  | Guidotti| +
-|05.| 04.03.2025 | 11-13 |D3| Outlier Detection (Methods) | {{ :dm:19_dm2_anomaly_detection_2024_25.pdf | Outlier Detection}}, {{ :dm:dm2_lab03_outlier_det.zip |LabOutDet}}  | Guidotti| +
-|06.| 05.03.2025 | 09-11 |C| Outlier Detection (Methods), Gradient Descent | {{ :dm:19_dm2_anomaly_detection_2024_25.pdf | Outlier Detection}}, {{ :dm:dm2_lab03_outlier_det.zip |LabOutDet}}, {{ :dm:20_dm2_gradient_descent_2024_25.pdf | GD}}  | Guidotti| +
-|07.| 10.03.2025 | 11-13 |E| Maximum Likelihood Estimation, Odds, Log Odds, Logistic Regression | {{ :dm:21_dm2_maximum_likelihood_estimation_2024_25.pdf | MLE}}, {{ :dm:22_dm2_odds_2024_25.pdf | Odds}},{{ :dm:23_dm2_logistic_regression_2024_25.pdf | LogReg}}, {{ :dm:dm2_lab04_logistic_reg.zip | LabLogReg}} | Guidotti| +
-|08.| 12.03.2025 | 09-11 |E| Support Vector Machines | {{ :dm:24_dm2_svm_2024_25.pdf | SVM}}, {{ :dm:dm2_lab05_svm.zip | LabSVM}}  | Guidotti| +
-|09.| 17.03.2025 | 11-13 |E| Neural Networks, Linear Perceptron | {{ :dm:25_dm2_perceptron_2024_25.pdf | Neural Network}}, {{ :dm:dm2_lab06_neural_networks.zip | LabNN}}  | Guidotti| +
-|10.| 19.03.2025 | 09-11 |E| Deep Neural Networks | {{ :dm:26_dm2_neural_network_2024_25.pdf | Deep Neural Network}}, {{ :dm:dm2_lab06_neural_networks.zip | LabNN}}  | Guidotti| +
-|11.| 24.03.2025 | 11-13 |E| Ensemble Methods | {{ :dm:27_dm2_ensemble_2024_25.pdf | Ensemble Methods}}, {{ :dm:dm2_lab07_ensemble.zip |LabEnsemble}}  | Guidotti| +
-|12.| 26.03.2025 | 09-11 |E| Ensemble Methods | {{ :dm:27_dm2_ensemble_2024_25.pdf | Ensemble Methods}}, {{ :dm:28_dm2_gradient_boost_2024_25.pdf | Gradient Boosting}}, {{ :dm:dm2_lab07_ensemble.zip |LabEnsemble}}  | Guidotti| +
-|13.| 31.03.2025 | 11-13 |E| Ensemble Methods | {{ :dm:27_dm2_ensemble_2024_25.pdf | Ensemble Methods}}, {{ :dm:28_dm2_gradient_boost_2024_25.pdf | Gradient Boosting}}, {{ :dm:dm2_lab07_ensemble.zip |LabEnsemble}}  | Guidotti| +
-|14.| 02.04.2025 | 09-11 |E| Explainable Artiticial Intelligence | {{ :dm:29_dm2_explainability_2024_25.pdf | XAI}}  | Guidotti| +
-|15.| 07.04.2025 | 11-13 |E| Explainable Artiticial Intelligence | {{ :dm:29_dm2_explainability_2024_25.pdf | XAI}}, {{ :dm:dm2_lab08_xai.zip | LabXAI}}  | Guidotti| +
-|16.| 09.04.2025 | 09-11 |E| Transactional Clustering | {{ :dm:30_dm2_transactional_clustering_2024_25.pdf | Transactional Clustering}}  | Guidotti| +
-|17.| 14.04.2025 | 11-13 |C| Sequential Pattern Mining | {{ :dm:31_dm2_sequential_pattern_mining_2024_25.pdf | GSP}}  | Guidotti| +
-|18.| 28.04.2025 | 11-13 |E| Time Series - Intro & Preprocessing |{{ :dm:32_dm2_time_series_preprocessing_2024_25.pdf | TS_Preprocessing}}, {{ :dm:dm2_lab09_ts_preprocessing.zip | LabTS_Prep}} | Guidotti| +
-|19.| 30.04.2025 | 09-11 |E| Time Series - Similarities & Distances |  {{ :dm:33_dm2_time_series_similarity_2024_25.pdf | TS_Similarity}}, {{ :dm:dm2_lab10_ts_dist.zip | LabTS_Sim}} | Guidotti| +
-|20.| 05.05.2025 | 09-11 |E| Time Series - Aprroximation & Clustering |  {{ :dm:34_dm2_time_series_approximation_clustering_2024_25.pdf | TS_ApproxClustering}}, {{ :dm:dm2_lab11_ts_approx_clustering.zip | LabTS_ApproxClustering}} | Guidotti|+
 ====== Exams ====== ====== Exams ======
  
Linea 204: Linea 206:
   - Understanding of the theoretical aspects of the topics addressed during the course. The student may be required to write on formulas or pseudocode. During the explanations, the student can use pen and paper.   - Understanding of the theoretical aspects of the topics addressed during the course. The student may be required to write on formulas or pseudocode. During the explanations, the student can use pen and paper.
   - Understanding of the algorithms illustrated during the course and their practical implementation. You will be asked to perform one or more simple exercises. The text will be shown on the teacher's screen and / or copied to Miro. The student will have to use pen and paper (if online by Miro https://miro.com/ to show how the exercise is solved.   - Understanding of the algorithms illustrated during the course and their practical implementation. You will be asked to perform one or more simple exercises. The text will be shown on the teacher's screen and / or copied to Miro. The student will have to use pen and paper (if online by Miro https://miro.com/ to show how the exercise is solved.
-  - Discussion of the project with questions from the teacher regarding unclear aspects, +  - Discussion of the project with questions from the teacher regarding unclear aspects, questionable steps or choices.
-questionable steps or choices.+
  
 ** Final Mark: ** for 12-credit exam, the final mark will be obtained as the ** Final Mark: ** for 12-credit exam, the final mark will be obtained as the
Linea 211: Linea 212:
  
 *** Exams Registration Instructions for DM1*** *** Exams Registration Instructions for DM1***
-- Use the Google registration form: [[https://forms.gle/JFULK3nNsHBU6Tqa8|here]] if you cannot register on Esami on Data Mining for year 2024/2025+- Use the Google registration form: TBD if you cannot register on Esami on Data Mining for year 2025/2026
 - When the registration closes you will receive a link to the Agenda - When the registration closes you will receive a link to the Agenda
 - Register on the Agenda selecting day and time (do not change you choice or cancel, if you book you want to do the exam) - Register on the Agenda selecting day and time (do not change you choice or cancel, if you book you want to do the exam)
Linea 218: Linea 219:
 ===== Exam Booking Periods ===== ===== Exam Booking Periods =====
   * Exam portal link: [[https://esami.unipi.it/|here]]   * Exam portal link: [[https://esami.unipi.it/|here]]
-  * Registration Form: [[https://forms.gle/NuAvCa3YK2h8MgrX7|here]] +  * Registration Form: TBD 
-  * 1st Appello: from 08/01/2025 to 16/01/2025 +  * 1st Appello: from TBD to TBD 
-  * 2nd Appello: from 30/01/2025 to 05/02/2025+  * 2nd Appello: from TBD to TBD
   * 3rd Appello: from TBD to TBD   * 3rd Appello: from TBD to TBD
   * 4th Appello: from TBD to TBD   * 4th Appello: from TBD to TBD
Linea 233: Linea 234:
   * An **oral exam**, that includes: (1) discussing the project report; (2) discussing topics presented during the classes, including the theory and practical exercises.    * An **oral exam**, that includes: (1) discussing the project report; (2) discussing topics presented during the classes, including the theory and practical exercises. 
  
-  * A **project**, that consists in exercises requiring the use of data mining tools for analysis of data. Exercises include: data understanding, clustering analysis, pattern mining, and classification (guidelines will be provided for more details). The project has to be performed by min 2, max 3 people. It has to be performed by using Python or any other data mining software. The results of the different tasks must be reported in a unique paper. The total length of this paper must be max 20 pages of text including figures. The paper must be emailed to [[andrea.fedele@phd.unipi.it]] and [[riccardo.guidotti@unipi.it]]. Please, use “[DM1 2024-2025] Project” in the subject.+  * A **project**, that consists in exercises requiring the use of data mining tools for analysis of data. Exercises include: data understanding, clustering analysis, pattern mining, and classification (guidelines will be provided for more details). The project has to be performed by min 2, max 3 people. It has to be performed by using Python or any other data mining software. The results of the different tasks must be reported in a unique paper. The total length of this paper must be max 20 pages of text including figures. The paper must be emailed to [[alessio.cascione@phd.unipi.it]] and [[riccardo.guidotti@unipi.it]]. Please, use “[DM1 2025-2026] Project” in the subject.
    
   * **Dataset**   * **Dataset**
-    - Assigned: 15/10/2024 +    - Assigned: 15/10/2025 
-    - MidTerm Submission: <del>15/11/2024</del> **22/11/2024** (+0.5) (half project required, i.e., Data Understanding & Preparation and Clustering) +    - MidTerm Submission: 15/11/2025 (+0.5) (half project required, i.e., Data Understanding & Preparation and Clustering) 
-    - Final Submission: 31/12/2024 (+0.5) one week before the oral exam (complete project required). +    - Final Submission: 31/12/2025 (+0.5) one week before the oral exam (complete project required). 
-    - Dataset: {{ :dm:dm1_dataset_2425_imdb.zip | IMDb}}+    - Dataset: Download here {{ :dm:dm1_25_26_dataset.zip |}}
  
 ** DM1 Project Guidelines ** ** DM1 Project Guidelines **
-See {{ :dm:dm1_project_guidelines_24_25.pdf | Project Guidelines}}.+See {{ :dm:dm1_project_guidelines_25_26.pdf |}}
  
  
Linea 254: Linea 255:
    
   * **Dataset**   * **Dataset**
-    - Assigned: 18/02/2025 +    - Assigned: 18/02/2026 
-    - MidTerm Submission: 07/05/2025+    - MidTerm Submission: 07/05/2026
     - Final Submission: one week before the oral exam (complete project required).     - Final Submission: one week before the oral exam (complete project required).
-    - Dataset: {{ :dm:dm2_dataset_2425_imdb.zip | IMDb Extended & IMDb Time Series}}+    - Dataset: TBD
  
 ** DM2 Project Guidelines ** ** DM2 Project Guidelines **
-See {{ :dm:dm2_project_guidelines_24_25.pdf | Project Guidelines}}.+See TBD.
  
  
Linea 285: Linea 286:
  
 ====== Previous years ===== ====== Previous years =====
 +  * [[dm_ds2024-25]]
   * [[dm_ds2023-24]]   * [[dm_ds2023-24]]
   * [[dm.2022-23ds]]   * [[dm.2022-23ds]]
dm/start.1746439256.txt.gz · Ultima modifica: 05/05/2025 alle 10:00 (7 mesi fa) da Riccardo Guidotti

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki