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10. SPREADING ON NETWORKS



NEOWOTKSDynamic Phenomena

* Dynamic prc
andom walk

according to protocol

- Network adaptation
- Temporal networks




Google ranking Is a combination of heuristic elements and the
probability that a random walker will find the page.

P )=+ 10y A 2 SR

k

out, |

self-consistent eq. iterative sol'n

g IS a damping factor: it mimics
that after having not found, what
we were looking for, we get bored
and make random trials. It also
avoids getting trapped (directed
NW!). N is the total number of
pages. g ~0.15 is used.

Larry Page

There are refined, unpublished
algorithms but the core is PR.



Transg

Truck Freight Flows, All

Commodities
All truck types; highway freight density in tons

&

http:/ /www.ops.thwa.dot.gov/freight/ Memphis/



For communi-
cation a route has
to be established
and kept open
throughout the
exchange of
Information

Information Is
chopped into
pieces (packets),
which travel on
different routes

| | and get

Device A reassembled
finally

www.tcpipguide.com



Heartbeat (Pacemaker)

Alternator Synchronous Generator  Flashing Fireflies

Couples oscillators show interesting phenomena on
networks including phase transitions and structure
sensitive behavior.
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Swine flu June 2009 - .1 - - 9-16 cases - 129-256 cases

(long range
Interaction)

| | 2cases [ 17-32cases [} 257-512 cases

3-4cases- 33-64 cases - 513-1024 cases

|| 5-8cases [} 65-128 cases [} 1025-2048 cases




Spreading

joral traits and cultural patterns

. Important for
lex social

- Epidemiolo
contagion more than P 9y
. ) : - Computer science
Dbinary interactions :
_ - Sociology
are needed: Peer :
- Economics

pressure



network

unization strategies

to diffusion:
move following
~arule (e.g., diffusion)
~ but carry an infectious
property, which can be
transmitted.

Another picture:
Temporal networks
Links are activated
temporarily on a
network enabling
connection between
Infected and
susceptible



Basic notions

ading among individuals
, — compartments:

ceptible

nfected

~.ecovered (immune)

posed (infected but not yet infecting)

ulting in different models in the spirit of
lon-diffusion processes, e.g., S +1 — 21.

B, u,n,y are rates by which the
reactions happen. In the simplest
case "homogeneous or perfect mixing”
IS assumed: Everybody can meet
everybody with the probability
proportional to the concentrations
(mean field approximation).




In the simple reactions not involving meeting between
iIndividuals from different compartment the description based on
rates have a simple interpretation. E.g., for I — R reaction with
raté u a Poisson process of recovery Iis assumed, indicating that
the probability density of recovery time is pe#t with the
average recovery time 1/u. (In many cases the memory-less
Poissonian assumption is not valid.)

Ifindividuals from two compartments are involved, as for S +
I — 21 we have to take into account the probability of meeting.

Perfect mixing means p% = NT the densities of the individuals in

compartment a characterize the situation. dp’ _ 8p' p° — up!

dt

The equations for SIS and SIR: dpS

dt
These are deterministic equations (no fluctuations); y = u for S
and O for SIR. With the normalization ¢! = 1 — g° for SIS; e =
1 — o° — ! for SIR the equations are complete.




= yl1- pR (1) - p expl- B0 (1) 17 )|

dt



Comparison of SIS and SIR: Above the epidemic threshold

density of infected

Dynamic equilibrium
SIS

Exponential growth Peak of epidemics Final stage



Epidemic threshold
ing 0 < ¢! « 1= linearization:

|5 —p )t

SN o' (t) ~ p'(0)e

ential growth for i with R, basic
reproduction number. R, = 1 is the epidemic threshold

above which there is a macroscopic outbreak in the SIR
and a nonzero asymptotic density of | in the SIS model.



welation to phase transititons
. Mapping to percolation

Outbreak
outbreak possible

For SIS: dynamic phase transition with an absorbing
phase



Homogeneous models

Limitations of the homogeneous models:
Fluctuations are ignored!

Fluctuations in:

1) Number of individuals in the different compartments
) Contacts
i) Transmission etc. rates (ignored here; multi agent)

1) The epidemic threshold has a probabilistic meaning.
Above the threshold the probability of an outbreak is
non-zero but less than 1. Fluctuations may lead to
extinction above the threshold!

1) Spreading takes place on the contact network



Spreading on networks

e the density of susceptible nodes with degree
at of the infected as i,. The corresponding
De, e.g., (we normalize by N,=NP(k)):

s, +1, +r, =1
k k k

This Is also mean field but much better.
It IS sensitive to the special role of the hubs.



Spreading on networks
The S| model:

k possibilities; ];—1 because neighbor

node got infected from somewhere

In the last step we ignored degree-degree

correlations (P(jlk) = jP()/{k)). |
di, (t) The linearized (early stage)

g - PL-ike(n) equations will then be:

> (i-DP(J)i;
(k)

Independent of k

a(t) =




Spreading on networks

Can be solved for uniform
Initial condition: i (t =0) =,

EXxponential growth.
Larger degree nodes
display faster prevalence.

Total rate of infected:

o e (1 -
.a)_;ukamk)—'o[1+<kz>-<k>




Spreading on networks

SIR model

Following a similar line of thought and taking into
account the correction due to recovery:

di, (1)

R ZAQORIAGE |eading to

t:¢=; Spreading if  [Eaes]
b(k?) - (m+ b)(k) bk~ (m+ b) J 5

Epidemic threshold. For an infinite scale free
network with a degree exponent < 3 we get K = «, 2
null epidemic threshold, i.e., for any nonzero rates
there Is spreading! The inhomogeneity parameter
governs the epidemic threshold, similarly to the
percolation and resilience thresholds




Immunization

d of dangerous diseases should be
ered by vaccination, a process which
rms S to R.

Ise, If every newborn baby is vaccinated, the
tion Is safe. This Is the way, how smallpox

) was defeated.

ed death in 20t century: 300 Million
Estimated infected in 1967: 15 Million

1979: WHO declared smallpox eradicated

Compulsory vaccination of all babies.

Vaccination is expensive



Immunization

\What IS the good strategy if only a part of the
population can be vaccinated?

Simplest: Uniform immunization density.

-1
Miean filc > Loutbreck

=1threshold

<1localized

If the density of
Immune vertices is ¢

a, ., —>a., (1-9) We have to choose g such

aS—)I (1_9) <1:> gc :1_

a,

a, a

S—l



Immunization

2d iInhomogeneous network:

Infinite scale free network with a degree

dnent = 3 we get k = «, thus g.=1, 1.e., everybody
has to be vaccinated. This is in full accord with
previous results that the epidemic threshold is O and
the percolation threshold is 1.

Uniform vaccination is not a good strategy in a scale
free network!



Immunization

\We have seen that a scale free network is robust
against random failures €<-> the epidemics is
‘robust™ against uniform vaccination. Reason: Hubs

A scale free network Is vulnerable against intentional
attacks < - targeted vaccinations. Reason: Hubs

What happens if we remove fraction g of the nodes
with highest degree? This introduces an upper cutoff in
the degrees: k.(9); all vertices with k > k_ will be
Immune. The protection of the network will be achieved

which defines the critical value of g




Immunization

Pastor-Satorras, Vespignani, 2001



Immunization

This strategy assumes knowledge about the degrees of
Individuals — which is not known!

—
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Liljeros et al. 2000

Efficient iImmunization without global knowledge



mmunization

lon g at random.
bors and immunize them!

Igh chance to find the hubs.

ter: Chose the ne|ghbor with highest degree.

(or n) step walk towards highest degree

Since networks are small worlds, we find a hub.

Cohen et al . 2003
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SECIAINCONRIAgIoNn: INfo, rumors, Innovation
he society structured?

The strength o (M.Granovetter, 1973 SN -

nall scale (micro-)

on of the amount of time, the emotional |ntenS|ty, the
utual confiding), and the reciprocal services which
characterize the tie.”

2. "The stronger the tie between A and B, the larger the proportion
of individuals S to whom both are tied.”

Consequences on large (macro-) scale:
Society consists of strongly wired communities linked by weak ties.
The latter hold the society together.



Constructing social network from mobile
phone data

oflvetis rrioolls ofiorie subscriptions
3 within the home operator

20 min

" Customers are anonymous (hash codes)
@ Data from an European mobile operator

J.-P. Onnela, et al. (2007)



Overlap

e Definition: rele

N

1]

O =—
J (k _1)+(kj _1)_nij

e the number of triangles around edge (vi, vj) is nij

* lllustration of the concepit:

(b) Oij=1/3

<A




Empirical Verification

* Let <O> denote O; averaged over a bin of w-values

Pum(W) =2 P(W)

» Use cumulative link weight distribution:
(the fraction of links with weights less than w’)

» Relative neighbourhood overlap
Increases as a function of link weight
—\Verifies Granovetter’'s hypothesis
(~95%)

(Exception: Top 5% of weights)

w<w’




The picture depends on type of questlon we ask.
Assuming that

mobile phone calls
represent social
contacts, the
aggregate network §
of call events is a
proxy for the
weighted human
Interaction network
at sociatal level.

Granovetterian structure strongly wired communities
linked by weak ties. Onnela et al. PNAS 2007




Spreading or information

Knowledge of information diffusion based on unweighted networks
Use the present network to study diffusion on a weighted network:
Does the topology and tie strength relationship affect spreading?
Spreading simulation: infect one node (with information); play SI

(1) Empirical: ~ p;; oc w;

(2) Reference: p; c<w>

Spreading significantly faster on the reference (average weight)
network because information gets trapped in communities in
the real network
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.).Jr:mJln' on a temporal network:
nation on a call network

e simple SI model
munities)
cture: topology — weight corr.
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behavior Is often non-Poissonian, bursty.
due to seasonalities, to external
Intrinsic burstiness.

1500 Time (days) 2000

Rocha et al. PNAS (2011)



Burstiness

Delay time (t)

I i J|-||.|..]|.j

600 . 40 60 BO 100
Evant numbar

Dalay time (z)

a0
Evant number

Barabasi Nature 2005




Why IS bursty dynamics interesting? Affects spreading,
gives Insight into the nature of human behavior.
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Periodic patterns

t (in hours




Deseasoning

Deseasoning the data by ) f
time rescaling ()= 2 pax(t)

0<t'<t

with

original
rescaled -

original
T=1day =

7days
28 days

12 15 18 2 10° 10 10% 10?2 10" 10° 10" 10 10°
t (hours) T/<t>

Thus the non-Poissonian character is not due to the
circadian pattern.



- Link-link dynamic correlations

“Infect” a random node, the empirical call

data and assume that “infection” is transmitted by each
call.

How to identify the
on spreading?
Introduce different null models by appropriate



Problem of null models: E.g. Time shuffling

agam‘

Destroyes burstiness (and link-link correlations)
but keeps weight and daily pattern



Original event sequence

¢ Time ordered sequence of original call events

e |t contains all possible correlations which take place in the system

WT: Weight-topology

BD: Bursty dynamics

LL: Link-link (triggered events)
CS: Community structure

WT BD LL G5 25%m

Origimal v ¥ ¥ ¥ 337 =

1.0

0.8r

0.4r

0.2f

0.0

| — original sequence |

1I5ﬂ
t (day)

R e e R e T e L e A

50 100 200 250 300



Time shuffled configuration network

¢ Using configuration model to destroy community structure, but
keep N, |[E| and the network connected

¢ Shuffle the event times to destroy bursty dynamics

¢ No correlation takes place Lok
in the system

WT BD LL CS 25%m
Original v ¥ ¥ | ¥ | 337 061

meCon’ [RHINHINHIRN o+ ¢

— woriginal sequence
time shuffled configuration network

0 50 100 150 200 250 300
t (day)




Configuration network

® Using the same configuration method to destroy community

structure

¢ Only bursty dynamical behavior is kept

® The infection speed is
slowed down by bursty

dynamics

WT BD LL CS 25%m
Original | v | ¥ | ¥ | ¥ | 337
TimeConf X X X X |64

corte, [0 ¢ [N ¢

1.0

02r |

— ofdlng| sequence
— configuration network

—  time shuffled configuration network

0.0—

50

100

150 200 250 300
t (day)




Time shuffled event sequence

¢ Shuffle the event times but keep community structure and weight-
topology correlations unchanged

® Bursty dynamics and link-link correlations are switched off

¢ Bursty event clustering is
slowing down the dynamics

1.0t Ja—

WT BD LL CS 25%m o

Original v | ¥ | ¥ ¥ | 337 ~06F
TimeConf X X X X 164  E ||
Config. X | v X X 1238 04|

Tme v DANIRN Y 229 |

032k | — original sequence
' — time shuffled
I — configuration netwark
— time shuffled configuration network

0.0

0 50 100 150 200 3250 300
t (day) I




Link sequence shuffled event sequence

® Shuffle link call sequences between randomly chosen links

¢ Link-link and weight-topology correlations are switched off

e Weight-topology correlations
also slow down the dynamics

1.0r

WT BD LL CS 25%m
Original v | v | ¥ | ¥ 337

TimeConf X X X X |64 -'
Config. X v | X | X 238 0.4f |
Time vy | X | X ¥ | 229 | — :!_rﬂslm'-l sequen;im .
) nlz_ | : INK sequenie &
LN R Rk | T
— time shuffled configuration network

0,0—=

o 50 100 150 200 250 300
t (day) I




Link sequence shuffling

select R N I -

Destroys topology-weight and link-link correlation,
keeps burstiness



Equal link sequence shuffled event sequence

¢ Shuffle call sequences between links having the same weight

¢ Only link-link correlations are destroyed

e Multilink correlations

accelerate the spreading
1.0r
process
WT BD LL CS5 25%m
Original v | v | ¥ | ¥ | 337 0.6
TimeConf X X X | X 64 =
Config. X v | X X 238 0.4
— original sequence
Time ‘{ )( )( ‘{ 22? : IE.wq:.a.l link sequir::] ::umd
Link X v X | v | 275 o2 I — time s:uﬂltd
— conflguration netwark

Equal link « v - v | 35.3 - | J | time shuﬁ]e:? cnnﬁguntll:lln network

8 50 00 150 200 250 300
t (day) I



weight link sequence shuffling

Linkl,,

Link2,,,

Link3,,

LinkI

wl

1:1’1

1:2’1

t3’1.-.

tN’1

1:1’2

1:2’2

t3’2. "

1:N’2

1:1’n 1

1:2’n 2’

t3’n 3’- '

tN’n N’

Destroys link-link correlations but keeps weight-
topology correlations and bursty dynamics




0,020

0.015

0,005

0.000

original sequence

equal link sequence shuffled
link sequence shuffled
configuration network

time shuffled

time shiffled configuration network |




HOYIg time behavior (total infection)

I milynal E-EqI.IH'IEE
0,020F B equal link sequence shuffled
E link sequence shuffled
I configuration network
B time shuffled
0.015} [ time shiffled configuration network | |
&
a 0.010
0,005
0.000 - -

300 400 500 600 700 800 300

: ty (day) \



:omplex contagion

Is are not good for social
tion, rumors, innovations etc.

e transmission IS not a 2-body interaction.

e spreading within the society can be
fast (e.g., rumor about the accident in a
uclear power plant in Hungary in 2004



Ihreshold model
ter (Am. J. Sociology 1978) Threshold

002) Mathematical form
om network with degree distribution p,

erage degree (k) = z. Every node has a

Id ¢ Indicating the critical ratio of adopting
ors needed to make the node adopt. Initiate
the process by infecting a node.

'here are vulnerable nodes, which get infected if
they have one adopting neighbor: ¢ < 1/k.

The others are stable.
'he phase diagram can be calculated.




e

herating function method

ode has degree k
e of degree k is vulnerable (1/k > ¢)
elongs to vulnerable cluster of size n

b b bh

ighbor —"— —"— -"— ofsizen

» DrPr X gen. fn.: a k-node >vuln.
A K b |
k Tk X = ZRM x®=1 gen. fn.: a node’s

Z

= vuln with k — 1 outgoing degrees: G,(x) =

Hy, = )., ¢, x™ gen. fn.: node belongs to vuln. cluster

b b bh

H, =).,w, x" gen. fn.: node’s neighbor - — " — -7 —

Sparse, random, uncorrelated networks are



Using tree-like property:

H, (x) = (1 — Gl(l)) + x1y + xr H, (x) + xro, HZ (x) +...
H(x)=1-G,(1) + xG;(H{(x)) and similarly

Ho(x) =1 — Go(1) + xGo(H1(x))

Using H,(1) =1

2
(n) = H, (1) = Go(1) + Z(GOG(},)()D from which the criterion
Y0

Go (1) = Xp. k(k — Dpypx = z for the transition



Cascade windows for the threshold model.

(ER graph)

First order tr.
No Global Cascades

Fragmentation, second order transition
Watts D J PNAS 2002;99:5766-5771

©2002 by National Academy of Sciences



Cumulative distributions of cascade sizes at the lower and
upper critical points, for n = 1,000 and z = 1.05 (open
sguares) and z = 6.14 (solid circles), respectively.

~S€econda order transition' :
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Cascade Size

Watts D J PNAS 2002;99:5766-5771

©2002 by National Academy of Sciences



Cascade windows for heterogeneous networks.

Uniform
_ Random
Homogeneous e, Graph

Thresholds

] cale Free *;_
emm-—smimamsmamamami=-—imsmsmo—o=: andom Graph - -

The two transitions differ qualitatively: the lower one is due to a
connectivity transition (similarly to the usual percolation
fragmentation) while the upper one is the consequence of too
high degree — the threshold criterion cannot be fulfilled.

Watts D J PNAS 2002;99:5766-5771

©2002 by National Academy of Sciences



[ake home messages

INng complex systems can be modelled by
esses on networks, spreading being one
ortant one.

reading can be described at different levels: Perfect
g, degree based mean field, etc.

boost spreading = 0 epidemic threshold for SF
cination should focus on hubs and they can be

fo by local algorithms

- Studying empirical data about spreading on temporal
networks by the method of null models reveals that the
main decelerating factors are Granovetterian structure
and bursty communication patterns.

- Threshold model describes transition between global
and local spreading. Global spreading can be very fast.




. An infected node infects its neighbors
bability 8 and gets immune in the next step with

ity 1.

r parameter of the problem is the asymptotic (average)
Infected nodes.

the order parameter, when the initial infection is

2 largest hub

- the last attached node

Technically: You generate the network and repeat the
experiment with different random number sequences starting
from the same node.

Compare the two cases!



