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10. SPREADING ON NETWORKS



• Dynamic processes on networks 

- Diffusion, random walk

- Transport

- Packet transfer according to protocol

- Synchronization

- Spreading

• Dynamics of networks

- Network growth and evolution

- Network restructuring

- Network adaptation

- Temporal networks



Google ranking is a combination of heuristic elements and the

probability that a random walker will find the page.  
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q is a damping factor: it mimics 

that after having not found, what 

we were looking for, we get bored 

and make random trials. It also 

avoids getting trapped (directed 

NW!). N is the total number of 

pages. q ~0.15 is used. 

There are refined, unpublished 

algorithms but the core is PR.

self-consistent eq. iterative sol’n

Larry Page

Random walk: Page Rank



Transport
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Packet switching

Information is

chopped into

pieces (packets),

which travel on 

different routes 

and get 

reassembled 

finally

Circuit switching
For communi-

cation a route has 

to be established 

and kept open 

throughout the 

exchange of 

information

www.tcpipguide.com

Packet transfer according to protocol



Synchronization

Couples oscillators show interesting phenomena on 

networks including phase transitions and structure 

sensitive behavior.



Spreading

Medieval spreading 

of „Black Death”

(short range 

interaction)
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Spreading

Swine flu June 2009

(long range 

interaction)
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Spreading of 

- Disease 

- Computer viruses

- Innovations

- Ideas

- Fashion

- Behavioral traits and cultural patterns

- …

Important for 

- Epidemiology

- Computer science

- Sociology

- Economics

- …

In complex social 

contagion more than 

binary interactions 

are needed: Peer 

pressure



Relation to diffusion:

Agents move following 

a rule (e.g., diffusion) 

but carry an infectious 

property, which can be 

transmitted.

Many approaches:

- Compartmental (mean field)

- Heterogeneous network

- Multi agent models

- Immunization strategies

- …
Another picture:

Temporal networks

Links are activated 

temporarily on a 

network enabling 

connection between 

infected and 

susceptible



Epidemic spreading among individuals
Different states – compartments:

- Susceptible 
- Infected 
- Recovered (immune)
- Exposed (infected but not yet infecting)

Resulting in different models in the spirit of 
reaction-diffusion processes, e.g., 𝑆 + 𝐼 → 2𝐼.

𝛽, 𝜇, 𝜂, 𝛾 are rates by which the 
reactions happen. In the simplest 
case “homogeneous or perfect mixing” 
is assumed: Everybody can meet 
everybody with the probability 
proportional to the concentrations 
(mean field approximation).



In the simple reactions not involving meeting between 

individuals from different compartment the description based on 

rates have a simple interpretation. E.g., for 𝐼 → 𝑅 reaction with 

rate 𝜇 a Poisson process of recovery is assumed, indicating that 

the probability density of recovery time is 𝜇𝑒−𝜇𝑡 with the 

average recovery time 1/𝜇. (In many cases the memory-less 

Poissonian assumption is not valid.)

If individuals from two compartments are involved, as for 𝑆 +
𝐼 → 2𝐼 we have to take into account the probability of meeting. 

Perfect mixing means 𝜌𝛼 =
𝑁𝛼

𝑁
, the densities of the individuals in 

compartment 𝛼 characterize the situation. 

The equations for SIS and SIR:

These are deterministic equations (no fluctuations); 𝜒 = 𝜇 for SI

and 0 for SIR. With the normalization 𝜚𝐼 = 1 − 𝜚𝑆 for SIS; 𝜚𝑅 =
1 − 𝜚𝑆 − 𝜚𝐼 for SIR the equations are complete.  
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Comparison of SIS and SIR:

Dynamic equilibrium

Above the epidemic threshold



At the beginning 0 < 𝜚𝐼 ≪ 1 linearization:



Exponential growth for  with 𝑅0 basic 

reproduction number. 𝑅0 = 1 is the epidemic threshold 

above which there is a macroscopic outbreak in the SIR 

and a nonzero asymptotic density of I in the SIS model.



For SIS: dynamic phase transition with an absorbing 

phase 

𝑹

𝝆𝑰

For SIR: Mapping to percolation

𝑹

𝑷{𝝆𝑹 → ∞}



Limitations of the homogeneous models:

Fluctuations are ignored!

Fluctuations in:

i) Number of individuals in the different compartments

ii) Contacts

iii) Transmission etc. rates (ignored here; multi agent)

i)  The epidemic threshold has a probabilistic meaning. 

Above the threshold the probability of an outbreak is 

non-zero but less than 1. Fluctuations may lead to 

extinction above the threshold!

ii)  Spreading takes place on the contact network



We denote the density of susceptible nodes with degree 

k as sk and that of the infected as ik. The corresponding 

equations will be, e.g., (we normalize by Nk=NP(k)): 
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This is also mean field but much better.

It is sensitive to the special role of the hubs.



The SI model: 
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In the last step we ignored degree-degree 

correlations (𝑃 𝑗 𝑘 = 𝑗𝑃(𝑗)/ 𝑘 ). 
The linearized (early stage) 

equations will then be:

)(1
)(

)(
)(

2

t
k

k

dt

td

tk
dt

tdik

























k

tijPj
t

j j 


)()()1(
)(

independent of k

𝑘 possibilities;       
𝑗−1

𝑗
because neighbor   

node got infected from somewhere

)()1(
)(

tki
dt

tdi
k

k  



)(1
)(

)(
)(

2

t
k

k

dt

td

tk
dt

tdik























 Can be solved for uniform 

initial condition: ik (t = 0) = i0

 


















 1

)1(
1)( /

20

t

k e
kk

kk
iti

with t =
k

b k2 - k( )

Exponential growth. 

Larger degree nodes 

display faster prevalence.

Total rate of infected:
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SIR model

Following a similar line of thought and taking into 

account the correction due to recovery:

dik (t)

dt
= bksk (t)Q(t)-mik (t) leading to

t =
k

b k2 - (m + b) k
=

1

bk - (m + b)
k >

m

b
+1Spreading if

Epidemic threshold. For an infinite scale free 

network with a degree exponent ≤ 3 we get κ = ∞, 

null epidemic threshold, i.e., for any nonzero rates 

there is spreading! The inhomogeneity parameter 

governs the epidemic threshold, similarly to the 

percolation and resilience thresholds



The outspread of dangerous diseases should be 

preventively hindered by vaccination, a process which 

intentionally transforms S to R. 

Of course, if every newborn baby is vaccinated, the 

population is safe. This is the way, how smallpox 

(Variola) was defeated. 

Estimated death in 20th century: 300 Million

Estimated infected in 1967: 15 Million 

1979: WHO declared smallpox eradicated

Compulsory vaccination of all babies.

Vaccination is expensive



What is the good strategy if only a part of the 

population can be vaccinated?

Simplest: Uniform immunization density. 

Mean field: IIS aa  
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Uncorrelated inhomogeneous network:

b(1- gc )

m
=k -1 =

k

k2

For an infinite scale free network with a degree 

exponent ≤ 3 we get κ = ∞, thus gc=1, i.e., everybody 

has to be vaccinated. This is in full accord with 

previous results that the epidemic threshold is 0 and 

the percolation threshold is 1. 

Uniform vaccination is not a good strategy in a scale 

free network!



We have seen that a scale free network is robust 

against random failures  the epidemics is 

“robust” against uniform vaccination. Reason: Hubs

A scale free network is vulnerable against intentional 

attacks  targeted vaccinations. Reason: Hubs

What happens if we remove fraction g of the nodes 

with highest degree? This introduces an upper cutoff in 

the degrees: kc(g); all vertices with k > kc will be 

immune. The protection of the network will be achieved

k
g

k2

g

>
b

m
which defines the critical value of g
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Pastor-Satorras, Vespignani, 2001



This strategy assumes knowledge about the degrees of 

individuals – which is not known!

Efficient immunization without global knowledge

Liljeros et al. 2000



Select a fraction g at random. 

Go to their neighbors and immunize them!

Cohen et al . 2003

This strategy has a high chance to find the hubs.

Even better: Chose the neighbor with highest degree.

Make a 2  (or n) step walk towards highest degree 

neighbors.

Since networks are small worlds, we find a hub.
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The strength of weak ties (M.Granovetter, 1973)

Hypothesis about the small scale (micro-) 

structure of the society:

1. “The strength of a tie is a (probably linear) 

combination of the amount of time, the emotional intensity, the 

intimacy (mutual confiding), and the reciprocal services which 

characterize the tie.”

2. “The stronger the tie between A and B, the larger the proportion 

of individuals S to whom both are tied.”

Consequences on large (macro-) scale:

Society consists of strongly wired communities linked by weak ties. 

The latter hold the society together.

Social contagion: info, rumors, innovation

First: How is the society structured?



 Over 7 million private mobile phone subscriptions

 Focus: voice calls within the home operator 

 Data aggregated from a period of 18 weeks

 Require reciprocity (XY  AND  YX) for a link

 Customers are anonymous (hash codes)

 Data from an European mobile operator

Y

X 15 min

5 min

20 min
X

Y

J.-P. Onnela, et al. (2007)



• Definition: relative neighborhood overlap (topological)

where the number of triangles around edge (vi, vj) is nij

• Illustration of the concept:
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• Let <O>w denote Oij averaged over a bin of w-values

• Use cumulative link weight distribution:

(the fraction of links with weights less than w’)
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• Relative neighbourhood overlap 

increases as a function of link weight

Verifies Granovetter’s hypothesis 

(~95%)

(Exception: Top 5% of weights)

Blue curve: empirical network

Red curve: weight randomised 

network



Aggregate networks

The picture depends on type of question we ask.
Assuming that 

mobile phone calls 

represent social 

contacts, the 

aggregate network 

of call events is a 

proxy for the 

weighted human 

interaction network 

at sociatal level.

Onnela et al. PNAS 2007

Granovetterian structure strongly wired communities 
linked by weak ties.



Knowledge of information diffusion based on unweighted networks

Use the present network to study diffusion on a weighted network:      

Does the topology and tie strength relationship affect spreading?

Spreading simulation: infect one node (with information); play SI

(1) Empirical: pij  wij

(2) Reference: pij  <w>

Spreading significantly faster on the reference (average weight) 

network because information gets trapped in communities in 

the real network

Reference

Empirical



Compared to the simple SI model correlations: 

- Topology (communities)

- Granovetterian structure: topology – weight corr.

- Burstiness

- Periodicities

- Triggered events



Strong temporal inhomogeneities
Temporal behavior is often non-Poissonian, bursty. 

This can be due to seasonalities, to external 

stimuli and to intrinsic burstiness.
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Poissonian

Bursty
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Why is bursty dynamics interesting? Affects spreading,

gives insight into the nature of human behavior.



days



Deseasoning the data by

time rescaling

with

Thus the non-Poissonian character is not due to the

circadian pattern.



Experiment: ”Infect” a random node, the empirical call 

data and assume that ”infection” is transmitted by each 

call.

How to identify the effect of the different correlations 

on spreading?

Introduce different null models by appropriate shuffling 

of the data.

- Link-link dynamic correlations

Triggered events



Problem of null models: E.g. Time shuffling

Link1 Link2 Link3... LinkN

t11 t21 t31... tN1

t12 t22 t32... tN2

. . . .

. . t3n_3.... .

t1n_1 . .

t2n_2 .

tNn_N

Destroyes  burstiness (and link-link correlations) 

but keeps weight and daily pattern



WT: Weight-topology
BD: Bursty dynamics
LL: Link-link (triggered events)
CS: Community structure











Link1 Link2 Link3... LinkN

t11 t21 t31... tN1

t12 t22 t32... tN2

. . . .

. . t3n_3.... .

t1n_1 . .

t2n_2 .

tNn_N

Link sequence shuffling 

Select random pairs of links sequences and exchange
Destroys topology-weight and link-link correlation, 
keeps burstiness





Link1w1 Link2w2 Link3w2 LinkNw1

t1’1 t2’1 t3’1... tN’1

t1’2 t2’2 t3’2... tN’2

. . . .

. . . .

t1’n_1’ t2’n_2’ t3’n_3’... tN’n_N’

Equal weight link sequence shuffling

Destroys link-link correlations but keeps weight-

topology correlations and bursty dynamics







SI,SIR, etc models are not good for social 

contagion of information, rumors, innovations etc. 

There the transmission is not a 2-body interaction.

Sometime spreading within the society can be 

extremely fast (e.g., rumor about the accident in a 

nuclear power plant in Hungary in 2004



Random network with degree distribution 𝑝𝑘
and average degree 𝑘 = 𝑧. Every node has a 

threshold 𝜙 indicating the critical ratio of adopting 

neighbors needed to make the node adopt. Initiate 

the process by infecting a node.

There are vulnerable nodes, which get infected if 

they have one adopting neighbor: 𝜙 ≤ 1/k.

The others are stable.

The phase diagram can be calculated.

M. Granovetter (Am. J. Sociology 1978) Threshold 

models 

D. Watts (PNAS 2002) Mathematical form



𝑝𝑘 Prob that a node has degree k

𝜌𝑘 Prob that a node of degree k is vulnerable (1/𝑘 > 𝜙)
𝑞𝑛 Prob that a node belongs to vulnerable cluster of size n

𝑤𝑛 Prob that a node’s neighbor –” – –” – –” – of size n

𝐺0 𝑥 =  𝑘 𝑝𝑘𝜌𝑘 𝑥
𝑘 gen. fn.: a 𝑘-node vuln.

𝐺1 𝑥 =  𝑘 𝑟𝑘 𝑥
𝑘−1 =  𝑘

𝑘𝑝𝑘𝜌𝑘

𝑧
𝑥𝑘−1 gen. fn.: a node’s 

neighbor  vuln with 𝑘 − 1 outgoing degrees: 𝐺1 𝑥 =
𝐺0
′(𝑥)/𝑧

𝐻0 =  𝑛 𝑞𝑛 𝑥
𝑛 gen. fn.: node belongs to vuln. cluster

𝐻1 =  𝑛𝑤𝑛 𝑥
𝑛 gen. fn.: node’s neighbor  –” – –” – –” –

Sparse, random, uncorrelated networks are tree like



Using tree-like property:

𝐻1 𝑥 = 1 − 𝐺1 1 + 𝑥𝑟0 + 𝑥𝑟1𝐻1 𝑥 + 𝑥𝑟2𝐻1
2 𝑥 +…

𝐻1 𝑥 = 1 − 𝐺1(1) + 𝑥𝐺1(𝐻1 𝑥 ) and similarly

𝐻0 𝑥 = 1 − 𝐺0(1) + 𝑥𝐺0(𝐻1 𝑥 )
Using 𝐻1 1 = 1

𝑛 = 𝐻0
′ 1 = 𝐺0 1 +

𝐺0(1)
2

𝑧−𝐺0
′′(1)

from which the criterion

𝐺0
′′ 1 =  𝑘 𝑘(𝑘 − 1)𝑝𝑘𝜌𝑘 = 𝑧 for the transition

,

𝐻1(𝑥)



Cascade windows for the threshold model. 

Watts D J PNAS 2002;99:5766-5771

©2002 by National Academy of Sciences

Fragmentation, second order transition

First order tr.

(ER graph)



Cumulative distributions of cascade sizes at the lower and 

upper critical points, for n = 1,000 and z = 1.05 (open 

squares) and z = 6.14 (solid circles), respectively. 

Watts D J PNAS 2002;99:5766-5771

©2002 by National Academy of Sciences

First order transition

Second order transition



Cascade windows for heterogeneous networks. 

Watts D J PNAS 2002;99:5766-5771

©2002 by National Academy of Sciences

The two transitions differ qualitatively: the lower one is due to a 

connectivity transition (similarly to the usual percolation 

fragmentation) while the upper one is the consequence of too 

high degree – the threshold criterion cannot be fulfilled.



- Functioning complex systems can be modelled by 

dynamic processes on networks, spreading being one 

of the most important one.

- Spreading can be described at different levels: Perfect 

mixing, degree based mean field, etc. 

- Hubs boost spreading  0 epidemic threshold for SF

- Vaccination should focus on hubs and they can be 

found by local algorithms

- Studying empirical data about spreading on temporal 

networks by the method of null models reveals that the 

main decelerating factors are Granovetterian structure 

and bursty communication patterns.

- Threshold model describes transition between global 

and local spreading. Global spreading can be very fast.



Last homework:

Create a Barabasi Albert network with 𝑁 = 105.
Simulate the SIS model. 

We have discrete times. An infected node infects its neighbors 

with probability β and gets immune in the next step with 

probability 1. 

The order parameter of the problem is the asymptotic (average) 

value of infected nodes. 

Calculate the order parameter, when the initial infection is 

- the at the largest hub

- the last attached node

Technically: You generate the network and repeat the 

experiment with different random number sequences starting 

from the same node. 

Compare the two cases!


