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6. NETWORK GROWTH MODELS
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Small World:

Average distance scales

logarithmically with the 

network size

Clustered: 

Clustering coefficient is 

large, it does not depend 

on network size.

Scale-free: 

The degree distribution 

is broad, with a power 

law tail.
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With configuration type models all requested features 

can be described – no model in the deeper sense

Amazing universal behavior across a large number of 

networks: small world, high clustering, broad degree 

distribution (qualitative universality).

Universality: common mechanism for emergence?

What is common in collaboration, internet, genetic etc. 

networks?!



Modeling: matter of culture

For a statistician: Modeling is to find a function, which 

fits data best. 

The more we learn about our system the more 

sophisticated models of this kind are needed. 

Such models can be of practical use: You don’t need 

to memorize all the details, you can take the model.  

It is like a map of a country. However, if you want 

more details the resolution of your map has to be 

better (the fitting functions will have more 

parameters). 



Folklore in physics:

With 2 parameters With 3 parameters

Straight line Parabola

With 4 parameters With parameters > 4



Lewis Carroll’s Sylvie and Bruno Concluded

“What do you consider the largest map that would be 

really useful?” 

“About six inches to the mile.” 

“Only six inches!” exclaimed Mein Herr. “We very soon 

got six yards to the mile. Then we tried a hundred yards 

to the mile. And then came the grandest idea of all! We 

actually made a map of the country, on the scale of a 

mile to the mile!” 

“Have you used it much?” I enquired. 

“It has never been spread out, yet,” said Mein Herr: “The 

farmers objected: they said it would cover the whole 

country, and shut out the sunlight! So now we use the 

country itself, as its own map, and I assure you it does 

nearly as well.”



We require from a model more!

It should give insight into the basic mechanisms.

Without any theoretical support, such models (fitting 

functions, maps) do not help much in understanding 

the phenomenon.

From Newton-type laws there is hope to draw 

conclusions beyond the observations, predictions 

e.g., discovery of new planets. 

Kepler’s 3 laws: Description

Newton’s laws + gravity law: Cause  consequence.



We need Newton’s laws for networks. 

It is not enough to study complex networks as they 

are given. We have to study how they emerge!

Most networks result from a growth process. 

Random networks have constant number of nodes –

they are unable to capture the growth aspect. 
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The simplest case is if we add nodes one by one and 

assume that all of them bring in m links.

The process needs a „seed”, i.e., an initial small set of 

nodes linked together.

Next question: how to attach?

m = 2



The spirit of ER or WS: attach entirely randomly!

Wrong! It does not lead to the required broad degree 

distribution.

Attachment is not purely random. There are hubs 

indicating that the Matthew effect is in play



Barabási & Albert, Science 286, 509 (1999)
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PREFERENTIAL ATTACHMENT: 

The probability that a node connects 

to a node with k links is proportional 

to k.

New nodes prefer to link to 

highly connected nodes. László Barabási      Réka Albert

Combination of

- Growth

- Preferential attachment

Normalization



(1) Networks continuously expand by the addition of new nodes

WWW :  addition of new documents

(2) New nodes prefer to link to highly connected nodes.

WWW :  linking to well known sites

GROWTH

PREFERENTIAL ATTACHMENT

What comes out?

Most interesting: 

Degree distribution

pk ~k-3
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Power law distribution of degrees

γ=3 independent of m



Power law out of preferential attachment is not that new:

Gyorgy Polya (1887-1985) 1923:  Polya process in the mathematics literature

George Udmy Yule (1871-1951) in 1925:  the number of species per genus of 

flowering plants; Yule process in statistics

Robert Gibrat (1904-1980), 1931: rule of proportional growth independent of 

system size. Gibrat process in economics

George Kinsley Zipf (1902-1950), 1949: the distribution of wealth in the society.

Herbert Alexander Simon (1916-2001), 1955, the distribution of city sizes and 

other phenomena 

Derek de Solla Price  (1922-1983), 1976, used it to explain the citation 

statistics of scientific publications, "cumulative advantage”

Robert Merton (1910-2003), 1968: Matthew effect, 

B A: simple network model 

+ the ubiquity of preferential attachment for networks

resulted in a radically new approach to modelling them



Derivation [N(t) = t; one node per time step]:
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P(k) ~ k-3

„Initial condition”

...

For large k:

Power law tail
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Growth without P.A. P.A. without growth (N fixed)

Exponential pk Power law only at the beginning, 

then sharply peaked pk finally 

complete graph. No stationary sol’n



Many questions: 

Average distance <d>?

Clustering C?

What about exponents other than 3?

Origin of preferential attachment (global rule)?
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BA: Boarderline case: 

slightly slower than log 

Finite second moment, 

result like in ER.

Config. model results but broader validity
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Bollobas, Riordan, 2002



BA model is a small world. The mechanism is through 

the hubs!  (C.f. Milgram experiment!)
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Denote the probability to have a link between node i

and j with P(i,j) The probability that three nodes i,j,l 

form a triangle is P(i,j)P(i,l)P(j,l). The expected number

of triangles, in which a node 𝑙 with degree 𝑘𝑙
participates is thus:
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Let us describe the time evolution of degrees 
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A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

This tells us that what matters is the age of the nodes.

Old nodes will always have advantage!
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Node j arrives at time tj=j and the

probability that it will link to node i

with degree ki already in the

network is determined by

preferential attachment:

Where we used that the

arrival time of node j is tj=j

and the arrival time of node is 

ti=i
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Clustering coefficient:

For ER we have C = p = <k>/N

Decreasing with size. BA:

Bad news!

Konstantin Klemm, Victor M. Eguiluz, 2002
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Shall we throw BA away? No!

It is an important aspect to capture the mechanism by 

which complex networks emerge. A new approach, a 

starting point.



• Nr. of nodes:

• Nr. of links:

•Average degree:

•Degree dynamics

•Degree distribution:

•Average Path Length:

•Clustering Coefficient:

  

N = t

  

L =m t

  

P(k) ~ k-g g = 3

The network grows,  but the degree distribution becomes stationary.
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Summary of the BA model:



How to cure the clustering problem?

P. Holme and B.J. Kim 2002

Something is missing from the attachment mechanism

Besides preferential attachment (hunting for popular

nodes), there is an additional process: Friends of 

friends get easily friends. This should be incorporated.

PA: Preferencial attachment

TF: triad formation

First link: PA
then TF with prob. p

PA with 1-p

C



This was easy! (Much easier than the effort with the 

configuration model!)

It is worth concentrating on the mechanisms!



γ=1 γ=2 γ=3

γw
in γw

out

γintern

γactor

γcollab

γmetab

γcita

γsynonyms

γsex

There is no strict universality: empirical exponents 

are system dependent and not 3!

BA
Can we produce different exponents 

with slight modification of BA, keeping 

the concept?



Yes!

Initial attractiveness : (k) ~ A+(k-m)=A+q

 P(k) ~ k
-

where =2 + A/m

Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000)

Tunable exponent

between 2 and ∞

A/m=0.001; 0.05; 1; 2; 4



Let us describe the time evolution of degrees 
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During a unit time (time step): 
Δk=m   A=m

This tells us that what matters is the age of the nodes.

Old nodes will always have advantage!

Further question: Can new ones make it? (Google!)



BA model:       k(t)~t ½ (first mover advantage)

Fitness Model:  Can Latecomers Make It?
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Network Science: Evolving Network Models February 2012



Fitness model:     fitness  (h )  k(h,t)~t(h)
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A key element in the BA model (and related ones) is 

that the new nodes attach to the old ones via

preferential attachment. 

We have seen that this is quite common assumption

– but it is strange!

Imagine, you are making a new www site and put

appropriate links into it. Do you have to search

through the 1010 web sites and make a statistics to

calculate the probability of linking to one of them?!

No way!



In reality we cannot test a huge network. The 

decision is local – but what comes out is preferential

attachment. (Self organization – invisible hand…)

We can measure this!

There could be other mechanisms. It is a legitimate

question to ask: Does a system obey PA? 
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Plot the change in the degree  k during a fixed time t 

for nodes with degree k, and you get ~ (k)

(Jeong, Neda, A.-L. B, Europhys Letter 2003;  cond-mat/0104131)
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To reduce noise, plot the sum of Π(k)

over k:

One has to measure the cumulative

increment of the nodes with degree

smaller than k



neurosci 
collab

actor 
collab.

citation 
network

Plots of the cumulative
Internet

No pref.   attach: 

κ~k 

Linear pref. attach: 

κ~k2

Network Science: Evolving Network Models February 2012
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What could be the local mechanism leading the PA?

1. Copying mechanism

directed network

select a node and an edge of this node

attach to the endpoint of this edge

2. Walking on a network

directed network

the new node connects to a node, then to every

first, second, … neighbor of this node

3. Attaching to edges

select an edge

attach to both endpoints of this edge (clustering!)

4. Node duplication

duplicate a node with all its edges

randomly prune edges of new node



Consider the citation network. 

Nodes: Papers

Directed: Out degrees - references cited

In degrees – citing papers

In an ideal case those papers are cited, which have 

been read by the authors and have impact on the 

results.

Authors are often sloppy: They simply copy the 

reference list of other papers. (This is evidenced by 

propagation of typos.)

Similar mechanism may work in other networks too.



To make it more realistic: Only a fraction of an old 

paper’s refs is copied and the remaining is filled in

with others selected at random. (For simplicity we

assume that all bibliographies have the same size, c.) 

1) aaa

2) bbb

c) zzz

Old New

1) aaa (copied)

2) bla (randomly chosen)

c) zzz

prob. 

prob. 1 

Kleinberg et al. 1999



As a result, we will have on the average c copied

items and c(1  ) ones selected at random.

Starting set: E.g., n0 vertices interconnected randomly

such that everybody has c out links (no mulitlinks

allowed). 

Q: What is the in degree distribution?

Node i can get a link in two ways: a) part of a list and 

copied b) randomly selected. The number of nodes at

time t is n.

a) Node i has indegree kin
i . The prob. of choosing i is 

thus  kin
i / n. (Case a). 

b) c(1  ) / n.
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The expected number of nodes with in degree k 

receiving a new link is  

𝑛𝑝𝑘
𝑘+ 1− 𝑐

𝑛
= 

𝑝𝑘[𝑘 + 1 −  𝑐]=
𝑐(𝑘 + 𝑎)

𝑐 + 𝑎
𝑝𝑘

with 𝑎 = 𝑐(
1


− 1)

which can be 

rewritten as

resulting in a rate

equation:

𝑛 + 1 𝑝𝑘 𝑛 + 1 =

𝑛𝑝𝑘 𝑛 +
𝑐 𝑘 − 1 + 𝑎

𝑐 + 𝑎
𝑝𝑘−1 𝑛 −

𝑐 𝑘 + 𝑎

𝑐 + 𝑎
𝑝𝑘 𝑛



𝑛 + 1 𝑝𝑘 𝑛 + 1 =

𝑛𝑝𝑘 𝑛 +
𝑐 𝑘 − 1 + 𝑎

𝑐 + 𝑎
𝑝𝑘−1 𝑛 −

𝑐 𝑘 + 𝑎

𝑐 + 𝑎
𝑝𝑘 𝑛

𝑛 + 1 𝑝0 𝑛 + 1 = 𝑛𝑝0 𝑛 + 1 −
𝑐𝑎

𝑐 + 𝑎
𝑝0 𝑛 k=0

For noo stationary solution:

𝑝𝑘 =
𝑐

𝑐+𝑎
[ 𝑘 − 1 + 𝑎 𝑝𝑘−1 𝑛 − 𝑘 + 𝑎 𝑝𝑘 𝑛 ]

𝑝0 = 1 −
𝑐𝑎

𝑐 + 𝑎
𝑝0

𝑝0 =
1 + 𝑎/𝑐

𝑎 + 1 + 𝑎/𝑐

k=0

For every k iterative sol’n. The 

asymptotics is: 𝑝𝑘~𝑘
−α

with α = 2 + 𝑎/𝑐 = 1 + 1/
For more details see Newman’s book

Tunable

exponent





Homework

Generate graphs with nonlinear preferential 

attachment:

Π 𝑖 =
𝑘𝑖
𝛽

 𝑗 𝑘𝑗
𝛽

Calculate the degree distribution and try to find a 

characteristic degree as a function of 𝛽. (Chose 𝛽
values not far from 1.)


