NETWORK GROWTH MODELS



Bomplex networks: observations

Wicod webs

F-neural network

. power grid
Acolaboration networks
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P metabolic networks

@ internet

Small World:
Average distance scales

logarithmically with the
network size

Wicod wabs

H#-neUral netanor
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= powergrid
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C /(k) = const

Clustered:
Clustering coefficient is

large, it does not depend
on network size.

Scale-free:

The degree distribution
Is broad, with a power
law tail.
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ayloring vs Modeling

ation type models all requested features
d — no model in the deeper sense

avior across a large number of
Igh clustering, broad degree
lon (qualitative universality).

ality: common mechanism for emergence?

-

“What is common in collaboration, internet, genetic etc.
networks?!



Problem of modeling

atter of culture

odeling Is to find a function, which

ore we learn about our system the more
Icated models of this kind are needed.

odels can be of practical use: You don't need

- to memorize all the details, you can take the model.

It is like a map of a country. However, if you want
more detalls the resolution of your map has to be
better (the fitting functions will have more
parameters).



ySICS:

eters

Straight line

ith 4 parameters

< -

Problem of modeling

With 3 parameters

i

Parabola

With parameters > 4




Problem of modeling
u consider the largest map that would be

to the mile.”

siIX Inches!” exclaimed Mein Herr. “We very soon
yards to the mile. Then we tried a hundred yards
lle. And then came the grandest idea of all! We
made a map of the country, on the scale of a

“It has never been spread out, yet,” said Mein Herr: “The
farmers objected: they said it would cover the whole
country, and shut out the sunlight! So now

, and | assure you it does
nearly as well.”

Lewis Carroll’'s Sylvie and Bruno Concluded



‘Problem of modeling

heoretical support, such models (fitting
do not help much in understanding

guire from a model more!
d give insight into the basic mechanisms.

's 3 laws: Description
- Newton's laws + gravity law: Cause - consequence.

From Newton-type laws there is hope to draw
conclusions beyond the observations, predictions
e.g., discovery of new planets.



lem of modeling

n’s laws for networks.

omplex networks as they

. We have to st how they emerge!

works result from a growth process.

andom networks have constant number of nodes —
they are unable to capture the growth aspect.



Growing networks

Internet Users in the World
Growth 1995 - 2010
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Source: www.internetworldstats.com - January, 2008
Copvriaght @ 2008 Miniwatts Marketing Group




Growing networks

— Hoztrares

— fotiue

site_count_history.gif
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Growing networks

POPULATION OF THE EARTH Allianz @

Number of people living worldwide since 1700 in billions

2048: 9 bin
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Source: United Nations World Population Prospects, Deutsche Stiftung Weltbevolkerung
For further information please visit: www.knowledge.allianz.com



Growing networks
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Growing networks

CPU Transistor Counts 1971-2008 & Moore’s Law
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Curve shows ‘Moore’s Law’:
transistor count doubling
every two years
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Growing networks

The Growth
of Cloud
Computing

cloud computing n.
Leveraging 3rd party computing
capability over the network to cut
costs, increase scale, improve
agility, and access best practices



Growth



ential attachment

or WS: attach entirely randomly!

does not lea
n.

he required broad degree

t Is not purely random. There are hubs
1dicating that the Matthew effect is in play



ment

des prefer to link to j
nnected nodes. Laszl6 Barabasi  Réka Albert

The probability that a node connects
va to a node with k links is proportional
to k.

Normalization

Barabasi & Albert, Science 286, 509 (1999)



Barabasi-Albert (BA) model

WWW : addition of new documents GROWTH

WWW : linking to well known sites
PREFERENTIAL ATTACHMENT

What comes out?

Most interesting:
Degree distribution

y=3 Independent of m




arabasi-Albert (BA) model

t of preferential attachment is not that new:

1923: Polya process in the mathematics literature
51) in 1925: the number of species per genus of
plants; Yule process in statistics

ibrat (1904-1980), 1931: rule of proportional growth independent of

. Gibrat process in economics

ley Zipf (1902-1950), 1949: the distribution of wealth in the society.
exander Simon (1916-2001), 1955, the distribution of city sizes and
mena

la Price (1922-1983), 1976, used it to explain the citation

ientific publications, "cumulative advantage”

Robert Merton (1910-2003), 1968: Matthew effect,

BA: network model
+ the of preferential attachment for networks
resulted Iin a radically new approach to modelling them



Barabasi-Albert (BA) model

Derivation [N(t) = t; one node per time step]:
Number of nodes with degree k at time t.

2m: each node adds m links, but each link

I1(k
(k)= Z, K; B4 contributs to the degree of 2 nodes
Number of links added to degree k nodes ™ uies
after the arrival of a new node: ”

k
mx'{pk(t)xm =5 P, (1)

# of degree k-1 nodes that
acquire a new link, becoming R ereTSiiig New node adds

attachment m new links
UULLR g 1 (3] # of degree k nodes that acquire a
z new link, becomlng degree k+1

E+DP, (E+1) =1, O+ P 4O —5 P, (O ‘

# k-nodes at time t+1 # k-nodes Gain of k- Loss of k-
at time t nodes via nodes via

k-1=> k k= k+1

A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)



Barabasi-Albert (BA) model

K

(E+DP, (E+D) =19, O+ 4O —5 Py (O

No nodes with degree < m. We need a separate eq.
for that case:

(t+1)p, (t+1) =tp, () + 1 —g 0, ()

The just
arriving new
node

We are interested in the long time, stationary solution:

!EDO Py (t) = Py



Barabasi-Albert (BA) model

(E+DP,(E+D =19, O+ Py O 5 P k>m

t+D)p,(t+D)=tp ()+ 1 -—

Stationary equations with

!I_[Do Py (t) = Py




Barabési-AIbert (BA) model

Jnitial condition”

B 2m B 2m(m+1)
C (M+2)(M+3)  (M+2D)(m+2)(m+3)

~ (M+2)(M+3)(m+4)

~ (M+3)(M+4)(m+5)

Power Iaw tal

— Kraplvsky, Redner, Leyvraz, PRL 2000

Dorogovtsev, Mendes, Samukhin, PRL 2000
Bollobas et al, Random Struc. Alg. 2001



A simple route

Start from eq. [ —le P(k — 1)—5 P(k)

2P(k) =(k-1D)P(k-1)—kP(k) =—P(k -1) —k[P(k) —P(k-1)]

Let’s take a continuum limit
P(k)—P((k-1) dP (k)
k —(k —1)
1 d[kP(k)]
2 dk

P(k) = —+ P(k)—% dzg‘) gP(k) =

P(k) = Ak~ BN T

2P(k) = —P(k —1) —k = —P(k —1) —k

P(k) =




Barabasi-Albert (BA) model

Growth without P.A. P.A. without growth (N fixed)

10° [~

Exponential p, Power law only at the beginning,
then sharply peaked p, finally
complete graph. No stationary sol'n



AradDc V) E 9 A o)ol-
- Lattice ER WS BA
<d> ~ L ~InN ~InN
= ‘5 ‘5
C const <k>IN const
=) =
P o(k, ky) Poisson | shifted ~KY
E] E] Poisson E]
C Juc 3
Averaade g 0 0 <O
> 0
Al ab)d 9,400 0 S
@ldle DT prefere s olle]lel: s




Barabasi-Albert (BA) model

const. — 2 Size of the biggest hub
4 0 (N)

Sl Inin N PIPE| /. distance increases
| 1 Y slower than log
<d> _JIn(y-1)

In N BA: Boarderline case:
Inln N slightly slower than log

sl N Finite second moment,
result like in ER.

Config. model results but broader validity



Barabasi-Albert (BA) model

Bollobas, Riordan, 2002



Barabasi-Albert (BA) model

Lattice ER WS BA
<d> ~ L ~In N ~In N ~ InN/
=N = Sl
C const [E <k>IN a] const [E
Px o(k, k) Poisson | shifted ~KkY
=] |Poisson & ‘5
syA DQE O O elale > > C OUd



Clustering Coefficient in the BA

e the probability to have a link between node |
ith P(i,)) The probability that three nodes 1,},l
form a triangle is P(i,))P(1,DP(,l). The expected number
of triangles, in which a node [ with degree k,
participates is thus:

N = [di [P, )PG.DP(LD) We need to calculate P(ij).

i=1  j=1




Time evolution of k
Let us describe the time evolution of degrees

K (t+1) =k (1) + m—2

ijj

dk, k

dt 2t

K () =m tl ~t# with f=1/2

10 1t03 10* 10°
This tells us that what matters is the age of the nodes.
Old nodes will always have advantage!

A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)



Calculate P(i,j)

Node j arrives at time t=] and the
probability that it will link to node i FEEc g mk
with degree k; already in the
network is determined by
preferential attachment:

time |

Where we used that the PG, i) =2 (ij) 2
arrival time of node j is t=j 2
and the arrival time of node is
t=i

jdnjdjp(n PGP, l)——jdnjdj(u) £ Gil) 2 ) 2——3 EN j

i=1 j=1 i=1 jlj

m Which is the degree  Let us
K (t)=m($j of node I at current approximate'
time, at time t=N K (k —1) =




Barabasi-Albert (BA) model

Clustering coefficient:

For ER we have C = p = <k>/N
Decreasing with size. BA:

Bad news!

_m(In N)?

C

8 N

Konstantin Klemm, Victor M. Eguiluz, 2002



Barabasi-Albert (BA) model

Lattice ER WS BA
<d> ~ L ~In N ~In N ~ |InN
% [E @ /IninN E
C const <k>IN const ~(InN)2 ‘
E % E IN %
P o(k, k) Poisson | shifted ~KkY
E] E] Poisson a] [E
5 § syA 0
C JOI o aAS>C 0 Al o = J
DMDIE oTWO amerae. A new approa 0



arabasi-Albert (BA) model

the BA model:

Nr. of nodes:

B: dynamical exponent

y: degree exponent

The network grows, but the degree distribution becomes stationary.



Eurther network growth models

How to cure the clustering problem?
Something IS missing from the attachment mechanism

Besides preferential attachment (hunting for popular
nodes), there is an additional process: Friends of
friends get easily friends. This should be incorporated.

PA: Preferencial attachment
TF: triad formation

First link: PA
then TF with prob. p

o ||_ TR A

PA with I-p N/

P. Holme and B.J. Kim 2002



Further network growth

models
This was easy! (Much easier than the effort with the

configuration model!)

<d> ~ L ~In N ~In N ~ |InN
- a] [E /InInN [E

P o(k, k) Poisson | shifted ~KkY
E] E] Poisson a] [E

It is worth concentrating on the mechanisms!




etwork growth models

trict universality: empirical exponents
endent and not 3!

g Ycollab
Y

Vintern vsynonyms

W
Y out
(0]§ VCita VSGX

T

V=3 |

. BA
n we produce different exponents

with slight modification of BA, keeping
the concept?



Further network growth

models
Yes!

Initial attractiveness : I1(k) ~ A+(k-m)=A+qg
— P(k) ~ k7 where y=2 + A/m

Tunable exponent
between 2 and <

Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000) A/m:O . 001, O . 05, 1, 2, 4



We saw k(t)

Let us describe the time evolution of degrees

During a unit time (time step):
Ak=m 2 A=m

This tells us that what matters is the age of the nodes.
Old nodes will always have advantage!

Further question: Can new ones make it? (Google!)

A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)



Further network growth
models
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Further network growth

models

fitness (77) k(n,t)~tA0

B(1n)=n/C

Degree (k)




referential attachment

t iIn the BA model (and related ones) Is
es attach to the old ones via
1ent.

ave seen that this is quite common assumption
IS strange!

Ima you are making a new www site and put
\ appropriate links into it. Do you have to search

through the 10'° web sites and make a statistics to

calculate the probability of linking to one of them?!



ential attachment

nnot test a huge network. The
but what comes out is preferential
anization — invisible hand...)

uld be other mechanisms. It is a legitimate
0 ask: Does a system obey PA?

e can measure this!



Preferential attachment

)ydes with degree k, and you get ~ I'1(k)
2duce noise, plot the sum of (k)

I (k) = > (k') One has to measure the c_:umulatlve
<k Increment of the nodes with degree
smaller than k

Jeong, Neda, A.-L. B, Europhys Letter 2003; cond-mat/0104131)



Preferential attachment

Plots of the cumulative

IT_(k) = > TI(k")

k'<k

K~k? I

Network Science: Evolving Network Models February 2012



ential attachment

the local mechanism leading the PA?

edge of this node

on a network
ted network
ew node connects to a node, then to every
, second, ... neighbor of this node

0 edges
select an edge
attach to both endpoints of this edge (clustering!)

4. Node duplication
duplicate a node with all its edges
randomly prune edges of new node



Vertex copying mechanism

e citation network.

ees - references cited
— citing papers

iIdeal case those papers are cited, which have
ead by the authors and have impact on the
S.

Authors are often sloppy: They simply copy the
reference list of other papers. (This is evidenced by
propagation of typos.)

Similar mechanism may work in other networks too.



X copying mechanism

re realistic: Only a fraction of an old
pied and the remaining is filled in
at random. (For simplicity we
aphies have the same size, c.)

lew
1) aaa (copied)

> 2) bla (randomly chosen)
prob. 1—vy

prob. y

Vv

C) 22z > C) 227

Kleinberg et al. 1999



Vertex copying mechanism

, we will have on the average cy copied
— ) ones selected at random.

vertices interconnected randomly
has c out links (no mulitlinks

q).
IS the In degree distribution?

an get a link in two ways: a) part of a list and
. copied b) randomly selected. The number of nodes at
time tis n.

a) Node i has indegree k.. The prob. of choosing i is
thus y k. / n. (Case a).
b) c(1 -5 /n.



Vertex copying mechanism

Y™ | (1=Y)e _ ykim+(1-y)c

n n n

The expected number of nodes with in degree k
receiving a new link is

npy w = which can be
c(k + a) rewritten as

prlvk + (1 —vy)c]= Pk

with a = c(% — 1)

c+a . o
resulting in a rate

equation:

n+Dp,(n+1) =
c(k—1+a) c(k +a)

np(n) + C_I_—apk—1(7’l) ~ 1 Pr (n)



n+ Dp,(n+1) =

k—1 k
npx(n) . C+:a) Pr-1(1) —C(C :aa) pr(n)
(n+ Dpo(n + 1) = npy(n) + 1 = ——po(w)

For n—>00 stationary solution:

P = — [(k — 14 a)py_1(n) — (k + a)px(n)]

ct+a
ca

po=1-— Po

c+a

1+a/c For every k iterative sol'n. The

ARyl 2Sympotics is:

. Tunable
Wi a =2+a/c=14+1/y
For more details see Newman's boo exponent




Summary of models

Linear growth, linear pref. attachment

Monlinear preferential attachment
TNk, )~ ke

Asymptotically linear pref. attachmemnt
II Ek;:l "—ﬂ.,.kr' as k,‘—t':ﬂ'

Initial attractivenesss
Accelerating growth {k}—¢?
constant initial attractiveness

Internal edges with probab. p

Rewiring of edges with probab. g

¢ internal edges
or removal of ¢ edges

Gradual aging
k) — kit —e) ™"

Multiplicative node fitness
T~ ik

Edge inheritance

Copying with probab. p
Bedirection with probab. »
Walking with probab. p
Attaching to edges

p directed internal edges
TN ke, e hor (Rl ) (kP )

y=3

no scaling for a1
y—2 if @a_—o=
y—oo if g.—0
y=2if A=0
p—m if A —

y=15if p—1
y—2 if =0
y=2if

1—-p+m
L e T

y—ao if pog.m—0
y—=2 if c—om
y—w ife——1
'}"—rl if p— —o=
¥—= if v—1
—1-C

T

d
Pikin)= Eln[ak,-,,}

y=(2—p)(l-p)
¥=14+1r
y=2 forp=p,
=3

":r"jﬂ=2- +P.;"|.
Yom=1+{1=p) "+ up/(l—p)

Barabasi and Albert, 1990
Krapivsky, Redner, and Leyvraz, 2000
Krapivsky, Redner, and Leyvraz, 2000

Dorogovtsev, Mendes, and Samukhin, 20004,
2000k

Dorogovisev and Mendes, 2001 a

Albert and Barabasi, 2000
Dorogovtsev and Mendes, 2000c
Dorogovisev and Mendes, 2000

Bianconi and Barabasi, 2000 a
Dorogovtsewv, Mendes, and Samukhin, 2000c

Eumar er al., 20000, 20000
Krapivsky and Redner, 2001
WVazquez, 2000
Dorogovisew, Mendes, and Samukhin, 2001a

Krapivsky, Rodgers, and Redner, 2001




s with nonlinear preferential

the degree distribution and try to find a
Istic degree as a function of 5. (Chose
far from 1.)



