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5. SCALE FREE NETWORKS AND 

THE CONFIGURATION MODEL



Degree distribution: Added links form an ER NW with 

prob p. If the original lattice has coordination number 

k0 we finally get for the distribiution of the  total degree 

k a shifted Poisson distribution.

pk = e-<k-k0> < k - k0 >k-k0

(k - k0 )!

pk

k
Sharply peaked, shifted Poisson



Summary of the WS model:

- Combines large clustering of some lattices with 

short average distance due to cross links

- Reflects some aspects of social networks   

(communities with high clustering connected  

by long distance links).

- It has a sharp degree distribution – in contrast    

with real world networks



The Matthew effect:   

“For unto every one that hath, 

shall be given, and he shall have 

abundance: but from him that 

hath not shall be taken even that 

which he hath.”
Matthew 25:29

Wealth, fame, status etc. is unevenly distributed.

Why?

Apostle St. Matthew (El Greco)



Wealth distribiution:

http://www2.ucsc.edu/whorulesamerica/power/wealth.html



http://archikron.blogspot.hu/

The Guardian Nov 11, 2011



“We are the 99%”? Not quite.

There is a distribution 

of wealth and there 

are people  with 

wealth on all scales

O.S. Klass et al. Economics Letters 90 (2006) 290 – 295

p(x) ~ x-α

Pareto distribution

Forbes 400 (1988-2003); x=w/<w>α ≈ 2.5



Popularity of youtube videos 

M. Cha et al. KAIST (2007)



Popularity of web pages

Distribution of pages 

with given  # of clicks 

within given period of  

time.

L. A. Adamic and B. A. Huberman,. Quarterly J., of El. Commerce 1, 512 (2000).



Popularity of scientific papers

(Independent) citations 

are scientometric

measures often used in 

evaluation of papers 

and researchers.

S. Redner, Eur. Phys. J. B 4, 131–134 (1998).



Remember: In percolation at criticality there is no 

characteristic length in the system  no scale 

power laws.

If we have a distribution without a characteristic 

scale (“scale free” distribution)  power law.

Power laws are very inhomogeneous.

No scale? All scales!
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Above a certain x value, the power law is always 

higher than the exponential. 
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We measure the empirical distribution by counting the 
frequency. p(x) ~ x-α

1

α

Lin-lin Log-log

log p(x) ~ –αlog x

p(
x)

 

p(
x)

 Noisy



The empirical distribution is obtained by making a 

histogram. If equidistant binning is used, there will 

be much fluctuations in the tail: Use log binning!

P
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Lin. binning Log. binning
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There is still too much fluctuation in the distribution 

function. 

Cumulative 

distribution

p(x)

F(x)
Or, alternatively
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If the random variable x is (quasi-) continuous, we 

have probability density function, denoted by p(x)

The probability that a < x < b is then
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What if p(x) is power law?
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If the probability density decays as a power law with an 

exponenent α then the cumulative distribution function 

P>(x) will also decay as a power law with an exponent 

α–1.
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Log. binning

α
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Cumulative distribution

Slope: –α Slope: – (α–1)

More sophisticated methods: Clauset et al.,SIAM Review 51(4), 661-703 (2009)



Over 3 billion 
documents

Nodes: WWW documents

Links:   URL links

P(k)  ~ k-
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Characteristic degree
Degrees on all scales

No characteristic degree

Most nodes have 
similar degrees

Peaked distribution



Networks with a degree distribution having a 

power law tail are called scale free networks

There are many!

(Faloutsos, Faloutsos and Faloutsos, 1999)

Nodes: computers, routers 

Links:   physical lines

Internet



The presence of hubs is apparent!



( ~ 3)

(S. Redner, 1998)

P(k) ~ k-

1736 PRL papers (1988)

Nodes: papers

Links:   citations

578...

25

H.E. Stanley,...



M: math

NS: neuroscience

Nodes: scientist (authors) 

Links: joint publication

(Newman, 2000, Barabasi et al 2001)

Collaboration network



N = 212,250 actors    

k = 28.78

P(k) ~k-

Days of Thunder (1990) 

Far and Away     (1992)  

Eyes Wide Shut  (1999)

=2.3

Actor network

Nodes: actors    

Links: cast jointly



Nodes: online user  

Links:  email contact

Ebel, Mielsch, Bornholdtz, PRE 2002.

Kiel University log files 

112 days, N=59,912 nodes

Pussokram.com online dating 

community; 

512 days,  25,000 users.

Holme, Edling, Liljeros, 2002.

Social networks



Nodes: people (Females; Males)

Links:  sexual relationships

Liljeros et al. Nature 2001

4781 Swedes; 18-74; 

59% response rate.

Network of sexual contacts



Organisms from all 

three domains of life 

are  scale-free!

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

Archaea Bacteria Eukaryotes
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Networks: 

The exponents vary from system to system.

Most are between 2 and 3 Universality?
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for k>0 (i.e. we assume that there are no 

disconnected nodes in the network)

𝑠 ∈ ℝ, s >1



In continuous formalism:

1

min)1(
1

min















 K

dkk

C

K

),[)( min   KkCkkp 

1)(

min




dkkp
K

  kKkp 1

min)1()(

Since a distribution has to be normalized, γ > 1
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If m–γ+1<0: 

   

< km >= -
(g -1)

(m - g +1)
Kmin

m

If m–γ+1>=0, the integral diverges.  

For a fixed γ this means that all moments with    m>= γ–1  

diverge.  



Most degree exponents are smaller than 3 

<k2> diverges!!!

  

k =< k > ±s k

WWW  7k

 5.3k

 4.7k

 16.3k

Internet

Metabolic

Phone call

Due to the huge fluctuations empirical <k> looses 

meaning as an estimator.
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The probability to have a node with degree 
larger than Kmax should not exceed the prob. 

to have one node, i.e. 1/N fraction of all 
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Finite scale free networks 

(real networks are always finite)

There will be a maximum degree: Kmax



How do Kevin Bacon, Erdős, etc. games work?

These are scale free networks

Find a path to a hub (usually short) 

Find the path to the target (also short)

Due to the presence of hubs, scale free networks 

are automatically small worlds!

The mechanism is different from that of the ER or the 

Watts-Strogatz model.



Degree of the biggest hub is of order O(N). Most nodes can be 

connected within two layers of it, thus the average path length will 

be independent of the system size.

The average path length increases in a double log manner so it is 

much slower than logarithmic. In a random network all nodes have 

comparable degree, thus most paths will have comparable length. 

In a scale-free network the vast majority of the path go through the 

few high degree hubs, reducing the distances between nodes. 

Some key models produce γ=3, so the result is of particular 

importance for them. This was first derived by Bollobas and 

Riordan for the network diameter in the context of  a dynamical 

model, but it holds for the average path length as well.

The second moment of the distribution is finite, thus in many ways 

the network behaves as a random network. Hence the average 

path length follows the result that we derived for the random 

network model earlier.

Cohen, Havlin 2003, Bollobas, Riordan, 2002; 

Small 

World
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World



γ=1 γ=2 γ=3

<k2> diverges

<k> diverges

Ultra small world behavior

Behaves like a 

random network

The scale-free behavior is 

relevant

Regime full of anomalies…

γw
in γw

out

γintern

γactor

γcollab

γmetab

γcita

γsynonyms

γsex



Practical remarks:

- The tail of the distribution follows often a power 

law causing divergence of the moments

- Since the low k regime “does not matter” and the 

network is always finite, we usually have a lower 

and an upper cutoff for the power law (in slang: 

scaling) 

A form which reflects both cutoffs: P(k) ~ (k + k0 )-g exp(-
k + k0

kt

)



- Small worldness

- High clustering 

- Scale free degree distribution

Erdős-Rényi: Small world, low clustering,

narrow degree-distribution

Watts Strogatz: Small world, high clustering 

narrow degree distribution

How to construct models with prescribed properties?

In concreto: With a given degree distribution?



Instead of taking a degree distribution we make a 

model for a prescribed set of degrees. Let us have N

nodes, where the i-th has degree  ki.

How to generate scale free (power law) degree 

distribution?



The degrees of the nodes are indicated by “half links” 

or “stubs”.

The network is constructed then by pairwise connecting 

the stubs. One possible set of pairings:

This figure indicates the algorithm too.

Clearly, one needs even number of stubs to be able to 

pair them.

..

A. Clauset



The degree sequence itself defines an ensemble.

For a given degree sequence, all possible pairings 

have the same probability. As the pairings are entirely 

random, there will be no correlations. (E.g., no 

(dis)assortativity). “Most random network with a given 

degree sequence.”

This is a model for a degree sequence and not for a 
(given, theoretical) degree distribution. However, if N
is large, the degree sequence taken from the 

distribution can be considered as representative. I.e., 

we generate a sequence from the distribution and 

from that the network.



What is the weight of a given network?

The number of permutations at a node is: ki!
The total number of possible permutations in the 

network is then

Since the degree sequence is constant in the 

ensemble, this means that all networks we 
construct have the same weight.

Nperm ki{ }( ) = Piki!

There is a little problem here!



These are usually unwelcome. (We want to have 

a simple graph.) Moreover, they influence the 

number of permutations, e.g., exchanging the 

ends of  a self link is not a new permutation; 

similarly, we over-count if there are multiple 

links.

Problems: self-links and multiple links 

Prohibit such pairings?



No!

This would mess up the statistics and even block the 

construction (what if there are no other possibilities 

than those we want to avoid?!).

If we are interested in large networks then this is 

usually a minor problem. Why?

For nice degree distributions the probability of self-

links and multiple links decreases rapidly with the size 
N of the system! We can simply disregard them.

Caution is needed for power law distributions with 

exponents smaller than 3.



𝑘2 ~𝐾max
3−𝛾~𝑁

3−𝛾

𝛾−1 ⇒ lim𝑁→∞𝐿self/𝑁 → 0

What is the expected number Lself self edges?

The probability of having a self edge at node i with 

degree ki is (we choose two stubs at i for all 2L-1 trials)
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from which follows:

For finite first and second moments Lself remains finite 

even in the N, L∞ limit  it becomes negligible. 

(Similar reasoning for multiple links.)

What if 2 < 𝛾 < 3?  We had: 𝐾max = 𝐾min𝑁
1

𝛾−1

Still OK



pij = ki
k j

2L -1
»
kik j

2L

What is the probability pij in the config. model to have 

a link between node i and j?

Let us take a stub from node i. It has 2L-1 possible 

pairing points. Out of these kj are from node j. Thus 

the probability of “landing” at j is kj /(2L – 1). But 

there are ki different possibilities to chose the 

starting stub at i. The final result is then:

for large networks



} ki -1i

randomly chosen

What is the probability that a node, which 

we arrive at from a randomly chosen 
node will have the degree k if the degree 

distribution is pk?

If i has degree k the probability of landing there is 

k /(2L – 1) ≈ k /2L (for large networks). There are Npk

nodes which have k degrees. Thus the probability that 

we land at any of them starting from an arbitrary node is 

pnn(k) =
k

2L
´Npk =

kpk

k
proportional to kpk not to pk only!



Let us assume that a friendship network can be 

described by the configuration model. What is the 

average number of friends of your friends. 
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The average degree is just <k>. The above formula 

tells that <k>nn > <k> because:

k2

k
- k =

k2 - k
2

k
=

s 2

k
> 0

“Your friend has 

more friends than 

you do.”

S. Feld, Am. J. Sociol. 96, 1464 (1991)



Collaboration networks and Internet:

Config. model is not exact (see last column) but 

captures an important aspect.

Newman book

What is the probability qk that an arbitrary node is 

connected to another one with k degrees in excess 

to the link between them? (Excess degree 

distribution)
qk = pnn (k +1) =

(k +1)pk+1

k



Global clustering coefficient C: 

i

j

qkiqk j will be the distribution that nodes i and j have ki

and kj excess degrees, respectively. Since the 

probabiliy of having a bond between two nodes having 
ki and kj free degrees is , we havekik j / 2L
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C =
1

N
const(pk )

where  the “const” depends on the 

moments of the distribution. 

We see that in the large N limit the average clustering 

coefficient becomes small.

Most (especially social) networks have high clustering!

Three important features: 

1. Short average distance

2. High clustering 

3. Broad (in the tail often power law) distribution

3. Automatically fulfilled (by construction)

2. Fails What about 1?



One might think that power law implies hubs and hubs 

were needed for small worldness  configuration 

model with power law degree distribution will 

automatically be a small world.

This reasoning assumes a single component or at least 

a giant component (the “world”, which is expected to be 

small).

Nothing assures a priori that there is a giant component 

in the configuration network with power law distribution 

of degrees. 



In fact, this is not always the case. If the exponent of 

the power law is too large, that means the decay of the 

probability of finding high degree nodes is too fast, 

there will be only isolates. 

We calculate generally for the configuration model the 

probability of having a giant component following the 

ideas we used for the ER graph.

Let  u be the probability that a link does not lead to a 

giant (infinite) component
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Is there any other solution? (Needed for having a 

giant component.) 

For 𝑝𝑘 = 𝑒− 𝑘 𝑘 𝑘

𝑘!
the ER result is retrieved (check!)
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The tipping point:
g’(u)=1

For g’(u=1)>1 there is a 

giant component, because 
there is a solution u < 1

Consequently, the probability of leading to a giant 
component is 1– u > 0.



For g’(u)>1 there is a giant component, because there 

is a solution u < 1. What does it mean?
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From which the result for random network 

follows: There is a giant component if  
k2 - 2 k > 0

Molloy-Reed 1995



k2 - 2 k > 0
This is the general Molloy-Reed criterion 

for the existence of a giant component.

What does it mean for power law degree distributions?

Usually we have only a power law in the tail. The small 

k values do not matter from the point of view of the 

asymptotic behavior but they influence the values of 

the moments.  

If pk ~ Ak –γ at least asymptotically, the second moment 

diverges for γ ≤ 3. Therefore for these values the MR 

inequality is automatically satisfied. In fact, one can 
show that for small enough γ there is only one 

component in an infinite system. (The prob. to find an 

isolate  0.)



Assuming power law from k = 1.



Low clustering is a problem!

Can we take the brute force approach as for the 

degree distribution?

Yes!

Instead of nodes with stubs only, we take 

nodes with stubs and corners of triangles!

Pst will be the probability of having a node with s stubs 

and t corners. (The total number of stubs must be a 

multiple of 2, that of the corners a multiple of 3.)

Newman 2009
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is given from contributions 

by the stubs and the 

corners (with multiplicity 2).
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Several properties can be calculated, e.g., percolation

threshold: This replaces 

Maloy-Reed



Further refinements are possible. E.g., correlations 

between degree and clustering (which indeed do 

exist).  

In  principle, whenever we discover a new feature of 

a network, we may incorporate that into the random 

network model!

What can be learned from such a model?



Homework

In a regular graph all degrees 𝑘 are the same.

Generate with the configuration model random 

regular graphs with 𝑘 = 1,2, and 3
Visualize and characterize the graphs.


