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Small world model (WS)

stribution: Added links form an ER NW with
original lattice has coordination number
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Sharply peaked, shifted Poisson




Small world model (WS)

=050
L=652

ary of the WS model:

bines large clustering of some lattices with

ort average distance due to cross links

- Reflects some aspects of social networks
(communities with high clustering connected
by long distance links).

- It has a sharp degree distribution — in contrast
with real world networks



nhomogeneities on all scales

itus etc. iIs unevenly distributed.

thew effect:

avery one that hath,
ven, and he shall have
2: put from him that
nall be taken even that
1ich he hath.”

Matthew 25:29
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Apostle St. Matthew (El Greco)



nhomogeneities on all scales

Bottom
80 percent:
11%: of net axt 10 percent:

worth %o of fin. wealth

Mext 10 percent: Top 1 percent:

129 of net worth 35% of net worth Next 5 percent: Top 1 percent:
137 of fin. wealth 32% of fin. wealth

Mext 3 percent:
14%: of net worth

Mext 4 percent:
28%: of net worth 30%: of fin. wealth

Mext 4 percent:

http://www2.ucsc.edu/whorulesamerica/power/wealth.html



homogeneities on all scales
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INhomogeneities on all scales

“We are the 99%"? Not quite.

There Is a distribution
of wealth and there
are people with
wealth on

()%

Pareto distribution

107

X

a~2.5 Forbes 400 (1988-2003); x=w/<w>

0.S. Klass et al. Economics Letters 90 (2006) 290 — 295



INhomogeneities on all scales

Popularity of youtube videos
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runber of views

M. Cha et al. KAIST (2007)



InNomogeneities on all scales

Popularity of web pages

Distribution of pages
with given # of clicks
within given period of
time.

L. A. Adamic and B. A. Huberman,. Quarterly J., of El. Commerce 1, 512 (2000).



InNomogeneities on all scales

Popularity of scientific papers

citations

(Independent) citations
are scientometric
measures often used In
evaluation of papers
and researchers.

S. Redner, Eur. Phys. J. B 4, 131434 (1998).



wver law distributions

colation at criticality there is no
In the system - no scale -

e a distribution without a characteristic
cale free” distribution) = power law.

Power laws are very inhomogeneous.

No scale?



e

wer law distributions

Above a certain x value, the power law Is always
higher than the exponential
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Log-log plot Semilog plot




Power law distributions

\We measure the empirical distribution by counting the
frequency. p(x) ~ x* log p(x) ~ -alog x
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Power law distributions

The empirical distribution is obtained by making a
histogram. If equidistant binning is used, there will
e much fluctuations in the tail: Use log binning!

Still.....
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Power law distributions

There IS still too much fluctuation in the distribution
function.

S p(x) =1 F() =P(x<x)= 3 p(x)

X=Xmin X':Xmin

Cumulative
distribution

Or, alternatively



Power law distributions

If the random variable x Is (quasi-) continuous, we
have probability density function, denoted by p(x)

The probability that a < x < b Is then

P(a<x<b)= jl p(x)dx;

Cumulative

F(X)=P(x'<Xx)= x")dx'
distribution: (x)=P( ) __[Op( )

P(x'>Xx)=1-F(x) :T p(x")dx’



Power law distributions
What if p(x) is power law?

p(x) =Cx™“

[X (a-)) _ y~(aD) ]

F(x) = jp(x )dx' =

a—1

P () =1~ F(x) = [ p(<)dx -

If the probability density decays as a power law with an
exponenent a then the cumulative distribution function

P.(x) will also decay as a power law with an exponent
a-1.



Power law distributions

AN
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Log. binning Cumulative distribution

Slope: —a Slope: — (a-1)

More sophisticated methods: Clauset et al.,SIAM Review 51(4), 661-703 (2009)



iInhomogeneities in complex
networks

SnosauabowoH
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Inhomogeneities in complex

networks

Peaked distribution Power Law Distribution

(] 1 - o :
E {!'f 'E ‘: |
e f™ — Very many nodes
g f :':,; ! Most nodes have - {: | M?H.:.Hryﬂﬁw Hireks
= »'j_‘h:". . similar degrees = :r &
> X\Z 2
% s "E ‘. A ferw hubs with

e -.I No highly "I‘. N i' Jew B ;w: e
= o i\ connected nmodes E RN SEEN FRMRn ETﬁF i
=) ' _ - M | = |= - Y L s
E 4 g’ A ,_E i k':\x

, . oy, | '

5 e _t_ / L E '.I_. T ".’ -
. _ : Z | Jdas

Degrees on all scales

Characteristic degree No characteristic degree



Scale free networks

Networks with a degree distribution having a
power law tail are called

Internet There are many!

: computers, routers
. physical lines

—_ ‘routes.out” <
Dommn 2 & ’. o o exp(8.52124) * x ** ( -2.48626) —

|:| Host

® ERouter

¢_y Domain

(Faloutsos, Faloutsos and Faloutsos, 1999)



ree networks

t!

The presence of hubs is apparen



Scale free networks

. papers
citations ’
1736 PRL papers (1988)

P(k) ~ k7
(~3)

(S. Redner, 1998)



Scale free networks

M: math (c)
NS: neuroscience

(Newman, 2000, Barabasi et al 2001)



Scale free networks
Actor network

ST xS . S A <G A EXE A A B E G 2 MM G

. actors
.. cast jointly

~ -
2| ~ Days of Thunder (1990)
c

d Away  (1992)
“ Eyes Wide Shut (1999)

neaisTen @)



Scale free networks

Pussokram.com online dating

SOCIaI netWOrkS Community;
512 days, 25,000 users.

: online user
: email contact

degree = g

B degree {friends) o

in—degree +

Kiel University log files T ™ ut—degree - | __
112 days, N=59,912 nodes

100000 5 friends

messages
10000
1000

100

10

.1

0.1

Ebel, Mielsch, Bornholdtz, PRE 2002. Holme, Edling, Liljeros, 2002.
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Scale free networks

ual contacts

people (Females; Males)
sexual relationships
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4781 Swedes; 18-74;
59% response rate.

Liljeros et al. Nature 2001



Scale free networks

Metabolic network

Organisms from all
three domains of life
are

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)



Molwork

Bl RS RAS
Bl RS RAS
Bl RS RAS
BRORROWA e
Internet, domain®
[aerocl, roulesr™
laternel, router™
Mowvic actors”™
Co-avthors, SPIRES™
Co-authors, newro.”
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Networks:

The exponents vary from system to system.
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Properties of power law
distributions

Riemann Zeta function

for k>0 (1.e. we assume that there are no
disconnected nodes in the network)




Properties of power law
distributions

In continuous formalism:

p(k) =Ck™ k=[K,,»)

e 1 B
[ p(kydk =1 C=— = (y — DK

j k7 dk

p(K) = (7 —L)K 2k 7

Since a distribution has to be normalized, y > 1




Properties of power law
distributions

m-th moment of the degree distribution: B G jkm p(k)dk

y—1, —r
min k

p(k) =(y-DK

_[Kmln’ )

1 Fome —1) _ _
k™ >=(y—-1DK”’?2 | k™7”dk =(7/—K 1 [} m-r+1
(7/ ) min KJ‘- (m_7/+1) mln[ ]imin

If m—y+1<0:

If m—y+1>=0, the integral diverges.
For a fixed y this means that all moments with  m>= -1
diverge.



Properties of power law

distributions
Xxponents are smaller than 3 =

o =(<k’>-<k>")"? >

I
k=<k>%xs
Bt !‘;-i.-:l.' LK :I * Fonut ¥in
WA 4.51 9y 245 2.1
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Metabolic [ERCTIEE:

Phone call

Due to the huge fluctuations empirical <k> looses
meaning as an estimator.




Properties of power law
distributions
Finite scale free networks
(real networks are always finite)

There will be a maximum degree: K.,

o i [he probability to have a node with degree
| p(k)dk ~ v larger than K., should not exceed the prob.
Kmax

max

to have one node, i.e. 1/N fraction of all

min
min min

K)dk = (y —D)KZ:? kak_(y—K“kV+1 — ——min




'S in scale free networks
3acon, Erdos, etc. games work?

L ale free networks
path to a hub (usually short) 2
2 path to the target (also short)

he presence of hubs, scale free networks
matically small worlds!

The mechanism is different from that of the ER or the
Watts-Strogatz model.



) S

tances In

scale free networks

Degree of the biggest hub is of order O(N). Most nodes can be
connected within two layers of it, thus the average path length will
be independent of the system size.

The average path length increases in a double log manner so it is

much slower than logarithmic. In a random network all nodes have
comparable degree, thus most paths will have comparable length.

In @ scale-free network the vast majority of the path go through the
few high degree hubs, reducing the distances between nodes.

Some key models produce y=3, so the result is of particular
Importance for them. This was first derived by Bollobas and
Riordan for the network diameter in the context of a dynamical
model, but it holds for the average path length as well.

The second moment of the distribution is finite, thus in many ways
the network behaves as a random network. Hence the average
path length follows the result that we derived for the random
network model earlier.

Cohen, Havlin 2003, Bollobas, Riordan, 2002;



8 free networks: summary

llab
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y=3'
<k?> diverges

B
<k> diverges '
.

Ultra small world behavior
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Regime full of anomalies... The scale-free behavior is
relevant
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dle free networks: summary

rks:

e of the distribution follows often a power
ausing divergence of the moments

ce the low k regime “does not matter” and the
ne K IS always finite, we usually have a lower
and an upper cutoff for the power law (in slang:
scaling)

ke + k,

A form which reflects both cutoffs: I3 RI(RE MG .

)



rties of large real world
hetworks

free degree lbution

1yl: Small world, low clustering,
narrow degree-distribution

gatz: Small world, high clustering
narrow degree distribution

QVatts

How to construct models with prescribed properties?

In concreto: With a given degree distribution?



Configuration model

How to generate scale free (power law) degree
distribution?

Instead of taking a degree distribution we make a
model for a prescribed set of degrees. Let us have N
nodes, where the i-th has degree k.




Configuration model

The degrees of the nodes are indicated by “half links”
or “stubs”.

The network Is constructed then by pairwise connecting
the stubs. One possible set of pairings:

AKgees 0 hrs

11111222233334445567 1412232512363435114673

This figure indicates the algorithm too.
Clearly, one needs even number of stubs to be able to
pair them. A. Clauset



Configuration model

for a degree sequence and not for a
al) degree distribution. However, if N
ge, the degree sequence taken from the

ution can be considered as representative. l.e.,
erate a sequence from the distribution and

The degree sequence itself defines an ensemble.

For a given degree seguence, all possible pairings
have the same probability. As the pairings are entirely
random, there will be no correlations. (E.g., no
(dis)assortativity). “Most random network with a given
degree sequence.”



Co'hfiguration model

Ight of a given network?

utations at a node Is: k!
otal number of possible permutations in the
SERNEE N, ({k}) =P k!

the degree sequence is constant in the

le, this means that all networks we
~_construct have the same weight.

There Is a little problem here!



Configuration model

Problems: self-links and multiple links

RKHA S8

11111222233334445566 14122325123634351145

These are usually unwelcome. (We want to have
a simple graph.) Moreover, they influence the
number of permutations, e.g., exchanging the
ends of a self link is not a new permutation;
similarly, we over-count if there are multiple

links. Prohibit such pairings?



C;)nfiguration model

up the statistics and even block the
If there are no other possibilities
those we want to avoid?!).

e Interested In large networks then this is
a minor problem. Why?

For nic “degree distributions the probability of self-
links and multiple links decreases rapidly with the size
N of the system! We can simply disregard them.

Caution is needed for power law distributions with
exponents smaller than 3.



Configuration model

\What IS the expected number L self edges?

The probability of having a self edge at node i with
degree K; IS (we choose two stubs at i for all 2L-1 trials)
_ki(k —1)/2

A\  from which follows:

(k) (k)
2(k)

O oL _1

L = 2 Py = 2k (k=1 /4L = 3"k, (k =) /2N(k) =

For finite first and second moments L remains finite
even In the N, L =< limit = it becomes negligible.

Similar reasoning for multiple links.

1

What if 2 <y < 3? We had Kpax = Kpin N1
3y .
()~ Kimax” ™" ~NY"1 = 1My ooLseir/N — 0 [REEEE



Configuration model

obability p;; in the config. model to have
ode i and j?

us take a stub from node :. It has 2L-1 possible
g points. Out of these k; are from node J. Thus
obability of “landing™ at ] Is k; /(2L - 1). But
are k. different possibilities to chose the

starting stub at i. The final result is then:

for large networks




Configuration model

randomly chosen
1
What Is the probability that a node, which
we arrive at from a randomly chosen

node will have the degree k if the degree
distribution is p,?

If 7 has degree k the probabillity of landing there Is

K /(2L —-1)=K /2L (for large networks). There are Np,
nodes which have k degrees. Thus the probabillity that
we land at any of them starting from an arbitrary node is

proportional to kp, not to p, only!




Configuration model

Let us assume that a friendship network can be
described by the configuration model. What is the
average number of friends of your friends.

The average degree Is just <k>. The above formula
tells that <k>_.,> <k> because:

“Your friend has
20l  more friends than
(k) you do.”

(K) iy F )= _
o k0=

S. Feld, Am. J. Sociol. 96, 1464 (1991)



Configuration model
Collaboration networks and Internet:

Config. model is not exact (see last column) but
captures an important aspect.

What IS the probability g, that an arbitrary node Is
connected to another one with k degrees in excess
to the link between them? (Excess degree

distribution) (k+1)p,..

qr = Pon(K+1) :T

Newman book



Configuration model

1

Global clustering coefficient C:
]
WiII be the distribution that nodes i and j have k;

and k; excess degrees, respectively. Since the

probabiliy of having a bond between two nodes having
k; and k; free degrees is , we have




Configuration model

where the “const” depends on the
moments of the distribution.

e see that In the large N limit the average clustering
fficient becomes small.

(especially social) networks have high clustering!

e Important features:

1. Short average distance

2. High clustering

3. Broad (in the tail often power law) distribution

3. Automatically fulfilled (by construction)
2. Fails What about 17



C;)nfiguration model

Ink that power law implies hubs and hubs
small worldness - configuration

w degree distribution will

all world.

atically be a

soning assumes a single component or at least
mponent (the “world™, which is expected to be

Nothing assures a priori that there Is a giant component
In the configuration network with power law distribution
of degrees.



% C‘Snfiguration model

ot always the case. If the exponent of
00 large, that means the decay of the
high degree nodes Iis too fast,

ulate generally for the configuration model the
llity of having a giant component following the
used for the ER graph.

Let u be the probability that a link does not lead to a
giant (infinite) component



Configuration model

(k)i

Trivial solution: u =1 since <k> = kak
k=1

Is there any other solution? (Needed for having a

glant component.)
~(k) {K)*

4

Forp, =e the ER result is retrieved (check!)



Configuration model

The tipping point:
g (u)=1

For ¢(u=1)>1 there is a
glant component, because
there I1s a solution u <1

Consequently, the probability of leading to a giant
component is 1— u > 0.



Configuration model

For ¢(u#)>1 there Is a giant component, because there
IS @ solution u < 1. What does it mean?

From which the result for random networ
follows: There is a giant component if

Molloy-Reed 1995



Configuration model

<k2> _ 2<k> >0 This Is thg general I\/IoII_oy-Reed criterion
for the existence of a giant component.

\What does it mean for power law degree distributions?

Usually we have only a power law in the tail. The small
K values do not matter from the point of view of the
asymptotic behavior but they influence the values of
the moments.

If p, ~ Ak 1 at least asymptotically, the second moment
diverges for y < 3. Therefore for these values the MR
Inequality I1s automatically satisfied. In fact, one can
show that for small enough y there is only one
component in an infinite system. (The prob. to find an

Isolate - 0.)



Configuration model

exponent y

Assuming power law from k = 1.



onfiguration model

Ing IS a problem!

rute force approach as for the

of nodes with stubs only, we take
Ith stubs and corners of triangles!

\St will be the probability of having a node with s stubs

and t corners. (The total number of stubs must be a
multiple of 2, that of the corners a multiple of 3.)

Newman 2009



Configuration model

Of course, the total degree
IS given from contributions
by the stubs and the
corners (with multiplicity 2).

_{1if a="b

0 otherwise
(Kronecker delta)

Several properties can be calculated, e.g., percolation

threshold: This replaces
Maloy-Reed




iguration model

ents are possible. E.g., correlations
nd clustering (which indeed do

ple, wheneve discover a new feature of
, We may Incorporate that into the random
odel!

be learned from such a model?



all degrees k are the same.
nfiguration model random
1,2,and 3

the graphs.



