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 How information flows through the 
network? 

 

 How different nodes play structurally 
distinct roles in this process? 

 

 How different links (short range vs. long 
range) play different roles in diffusion? 
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 How people find out about new jobs? 
 Mark Granovetter, part of his PhD in 1960s 
 People find the information through personal 

contacts 
 But: Contacts were often acquaintances rather 

than close friends 
 This is surprising:  
 One would expect your friends to help you out more than 

casual acquaintances when you are between the jobs 
 Why is it that distance acquaintances are 

most helpful? 
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[Granovetter ‘73] 



 

 Two perspectives on friendships: 
 Structural: 
 Friendships span different portions of the 

network 

 Interpersonal: 
 Friendship between two people is either 

strong or weak 
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[Granovetter ‘73] 



 Which edge is more likely a-b or a-c? 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Triadic closure: If two people in a  
network have a friend in common  
there is an increased likelihood  
they will become friends themselves 
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a 

b c 



 Triadic closure == High clustering coefficient 
Reasons for triadic closure: 
 If B and C have a friend A in common, then: 
 B is more likely to meet C  
 (since they both spend time with A) 

 B and C trust each other  
 (since they have a friend in common) 

 A has incentive to bring B and C together  
 (as it is hard for A to maintain two disjoint relationships) 

 

 Empirical study by Bearman and Moody:  
 Teenage girls with low clustering coefficient are  

more likely to contemplate suicide 
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 Define: Bridge edge 
 If removed, it disconnects the graph 

 Define: Local bridge 
 Edge not in a triangle 

 Two types of edges: 
 Strong (friend) and  

weak ties (acquaintance) 
 Strong triadic closure: 
 Two strong ties imply a third edge 

 
 
 

 If strong triadic closure is satisfied  
then local bridges are weak ties! 
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 For many years the Granovetter’s  
theory was not tested 

 But, today we have large  
who-talks-to-whom graphs: 
 Email, Messenger, Cell phones, Facebook 

 

 Onnela et al. 2007:  
 Cell-phone network of 20% of country’s 

population 
 Edge strength: # phone calls 
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 Edge overlap: 

𝑂𝑖𝑖 =
𝑁(𝑖)⋂𝑁(𝑗)
𝑁(𝑖)⋃𝑁(𝑗)

 

 n(i) … set of 
neighbors of I 
 

 Overlap = 0 when 
an edge is a local 
bridge 
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 Cell-phone network 
 Observation: 
 Highly used links  

have high overlap! 
 
 
 

 Legend: 
 Permuted strengths: Keep  

the network structure  
but randomly reassign  
edge strengths 

 Betweenness centrality: 
number of shortest paths 
going through an edge 
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 Real edge strengths in mobile call graph 
 Strong ties are more embedded (have higher overlap) 
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 Same network, same set of edge strengths 
but now strengths are randomly shuffled 
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 Edges strength is labeled based on betweenness 
centrality (number of shortest paths passing 
through an edge) 
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b=16 
b=7.5 



 Removing links by strength (#calls)  
 Low to high 
 High to low 
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 Removing links based on overlap 
 Low to high 
 High to low 
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[Marlow et al. ‘09] 
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[Ron Burt] 
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Few structural holes Many structural holes 

Structural Holes provide ego with access  
to novel information, power, freedom 



 The “network constraint” measure [Burt]: 
 To what extent are person’s contacts redundant 

 
 
 

 

 Low: disconnected contacts 
 High:  contacts that are  

close or strongly tied 
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 Network constraint: 
 James: cj=0.309 
 Robert: cr=0.148 
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 Constraint: To what 
extent are person’s 
contacts redundant 
 Low: disconnected 

contacts 
 High:  contacts that 

are close or strongly 
tied 
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[Ron Burt] 



 Measure of diversity: 
 ≈ 1-ci 
 structural holes + entropy 

of edge strengths 
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[Eagle-Macy, 2010] 
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 Networks of tightly 
connected groups 
 

 Network communities: 
 Sets of nodes with lots of 

connections inside and 
few to outside (the rest 
of the network) 

26 

Communities, clusters, 
groups, modules 
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 How to automatically 
find such densely 
connected groups of 
nodes? 

 
 Ideally such automatically 

detected clusters would 
then correspond to real 
groups 

 
 For example: 

27 

Communities, clusters, 
groups, modules 
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Find micro-markets by partitioning the 
“query x advertiser” graph: 

advertiser 

qu
er

y 
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 Zachary’s Karate club network: 
 Observe social ties and rivalries in a university karate club 
 During his observation, conflicts led the group to split 
 Split could be explained by a minimum cut in the network 

 Why would we expect such clusters to arise? 



 In a social network nodes explicitly 
declare group membership: 
 Facebook groups, Publication venue 

 

 Can think of groups as node colors  
 

 Gives insights into social dynamics: 
 Recruits friends? Memberships spread 

along edges 
 Doesn’t recruit? Spread randomly 

 

 What factors influence a person’s 
decision to join a group? 
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[Backstrom et al. KDD ‘06] 



 Analogous to diffusion 
Group memberships 
spread over the network: 
 Red circles represent  

existing group members 
 Yellow squares may join 

 Question:  
 How does prob. of joining  

a group depend on the 
number of friends already  
in the group? 
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 Diminishing returns: 
 Probability of joining increases with the  

number of friends in the group 
 But increases get smaller and smaller 
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LiveJournal:  
1 million users 
250,000 groups 

DBLP:  400,000 papers 
100,000 authors 
2,000 conferences 

[Backstrom et al. KDD ‘06] 



 Connectedness of friends: 
 x and y have three friends in the group 
 x’s friends are independent 
 y’s  friends are all connected 

 
 
 Who is more likely to join? 
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x y 



 Competing sociological theories: 
 Information argument [Granovetter ‘73] 
 Social capital argument [Coleman ’88] 

 
 

 Information argument:  
 Unconnected friends give independent support 

 Social capital argument: 
 Safety/trust advantage in having friends  

who know each other 
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x y 

[Backstrom et al. KDD ‘06] 



LiveJournal: 1 million users, 250,000 groups 
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Social capital argument wins! 
Prob. of joining  increases with the 

number of adjacent members. 

11/9/2011 



 A person is more likely to 
join a group if  
 she has more friends who  

are already in the group 
 friends have more 

connections between 
themselves 

 So, groups form clusters of 
tightly connected nodes 
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[Backstrom et al. KDD ‘06] 



How to find communities? 
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We will work with undirected (unweighted) networks 



 Intuition: 
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Edge strengths (call volume)  
in real network 

Edge betweenness  
in real network 



 Divisive hierarchical clustering based on the 
notion of edge betweenness: 
 Number of shortest paths passing through the edge 

 Girvan-Newman Algorithm: 
 Undirected unweighted networks 

 Repeat until no edges are left: 
 Calculate betweenness of edges 
 Remove edges with highest betweenness 

 Connected components are communities 
 Gives a hierarchical decomposition of the network 
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[Girvan-Newman ‘02] 
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Need to re-compute 
betweenness at 

every step 

49 
33 

12 1 
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Step 1: Step 2: 

Step 3: Hierarchical network decomposition: 
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Communities in physics collaborations  



 Zachary’s Karate club:  
hierarchical decomposition 
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1. How to compute betweenees? 
2. How to select the number of 

clusters? 
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 Want to compute  
betweenness of 
paths starting at 
node A 

 Breath first search 
starting from A: 
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 Count the number of shortest paths from A 
to all other nodes of the network: 

11/9/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 47 



 Compute betweenness by working up the 
tree: If there are multiple paths count them 
fractionally 
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1 path to K. 
Split evenly 

1+0.5 paths to J 
Split 1:2 

1+1 paths to H 
Split evenly 

The algorithm: 
•Add edge flows: 
  -- node flow =  
        1+∑child edges  
  -- split the flow up 
based on the parent 
value 
• Repeat the BFS 
procedure for each 
starting node 
 



 Compute betweenness by working up the 
tree: If there are multiple paths count them 
fractionally 
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1 path to K. 
Split evenly 

1+0.5 paths to J 
Split 1:2 

1+1 paths to H 
Split evenly 

The algorithm: 
•Add edge flows: 
  -- node flow =  
        1+∑child edges  
  -- split the flow up 
based on the parent 
value 
• Repeat the BFS 
procedure for each 
starting node 
 



Define modularity to be 
 Q = (number of edges within groups) – 

 (expected number within groups) 
  

Actual number of edges between i and j is 
 
 
 

Expected number of edges between i and j is 
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m…number of edges 



 Q = (number of edges within groups) – 
 (expected number within groups) 

 Then: 
 
 

 

 Modularity lies in the range [−1,1] 
 It is positive if the number of edges within groups 

exceeds the expected number 
 0.3<Q<0.7 means significant community structure 
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m … number of edges 
Aij … 1 if (i,j) is edge, else 0 
ki … degree of node i 
ci … group id of node i 
δ(a, b) … 1 if a=b, else 0 
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 Modularity is useful for selecting the  
number of clusters: 
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Why not optimize modularity directly? 

Q 
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