Strength of Weak Ties and
Community Structure In
Networks



Networks: Flow of Information

How different play structurally
distinct roles in this process?

How different ( range vs.
range) play different roles in diffusion?

11/9/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



[Granovetter ‘73]

Strength of Weak Ties

Mark Granovetter, part of his PhD in 1960s

People find the information through personal
contacts

Contacts were often rather
than close friends

One would expect your friends to help you out more than
casual acquaintances when you are between the jobs
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[Granovetter ‘73]

Granovetter’'s Answer

Two perspectives on

Friendships span different portions of the
network

Friendship between two people is either
strong or weak
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Triadic Closure

If two people in a 2ot ©wh
network have a friend in common L
there is an increased likelihood NG S T

they will become friends themselves “©" =I7izrid -

2 4 6 8 10 12 14
Hops, h
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Triadic Closure

Triadic closure == High

If Band C have a friend A in common, then:
Bis C
(since they both spend time with A)

BandC each other
(since they have a friend in common)

A has to bring B and C together

(as it is hard for A to maintain two disjoint relationships)

Empirical study by Bearman and Moody:

Teenage girls with low clustering coefficient are
more likely to contemplate suicide
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Granovetter’s Explanation

Define:

Define:

Edge not in a triangle
Two types of edges:

(friend) and
(acquaintance)

Two strong ties imply a third edge

W
If strong triadic closure is satisfied >/[s\,
then NZa
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Tie strength in real data

But, today we have large
who-talks-to-whom graphs:

Email, Messenger, Cell phones, Facebook

Cell-phone network of 20% of country’s
population

Edge strength: # phone calls
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Neighborhood Overlap

0ii=0 o=113 C

o _NonNg |
i = NOUNG) H
n(i) ... set of e

neighbors of |

Oi=2/3 Oi=1
Overlap = 0 when
an edge is a H %
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Phones: Edge Overlap vs. Strength

<p

Cell-phone network

02¢ O
Highly used links

have high overlap!

rPermuted ¢
strengths

—
N

Legend:

Neighborhood overlap
o

O OOOOQ
Permuted strengths: Keep S 00000
the network structure 05§ 0 %
, Betweenness

but randomly reassign centrality o
edge strengths 0 . . : .
Betweenness centrality: 0 02 04 06 08 1
number of shortest paths Edge strength (#calls)

going through an edge
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Real Network, Real Tie Strengths

Strong ties are more embedded (have higher overlap)
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Real Net, Permuted Tie Strengths

a\?'-v

grw.

g
%ﬁ:--«

Same network, same set of edge strengths
but now
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Edge Betweenness Centrality

Edges strength is labeled based on
(number of shortest paths passing
through an edge)
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Link Removal by Strength

Low
disconnects
the network

sooner

0.75 t

0.50 |

0.25 |

Size of largest component

0

Fraction of removed links

Removing links by
Low to high

Conceptual picture

ngh to lOW of network structure
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Link Removal by Overlap

Low
disconnects
the network

sooner

0.75 |

0.50 ¢

0.25 |

Size of largest component

0

Removing links based on

Low to high
ngh to |OW Conceptual picture

of network structure
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[Marlow et al. ‘09]

Another Example: Facebook

All Friends Maintained Relationships
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Small Detour:
Structural Holes




[Ron Burt]

Small Detour: Structural Holes
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Structural Holes

Structural hole

/T
/[
!

Rz

Few structural holes Many structural holes

Structural Holes provide ego with access
to novel information, power, freedom
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Structural Holes: Network Constraint

[Burt]:
To what extent are person’s contacts redundant
pu,~1/d,

: disconnected contacts

. contacts that are 0
close or strongly tied 1 2 3 4 S
1/.00 .25 .25 .25 .25
2 2|/.50 .00 .00 .00 .50
_ _ 3/1.0 .00 .00 .00 .00
Ci —ZCij —Z Pi +Z(pik pkj) 4|.50 -00 .00 .00 .50
j j k 5/.33 .33 .00 .33 .00

P --- Prop. of u’s “energy” invested in relationship with v
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Example: Robert vs. James

To what
extent are person’s
contacts redundant

: disconnected
contacts

. contacts that
are close or strongly
tied

James: cj=O.309
Robert: ¢,=0.148
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Spanning the Holes M

atters

[Ron Burt]

11/9/2011
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[Eagle-Macy, 2010]

Diversity & Development

10.0.- T T T - "::--l:..,_--_. T4

Socio—-Economic Percentile

-4 -2 0 2 4
Composite Measure of Diversity

= 1-C|
structural holes + entropy
of edge strengths
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Network Communities



Network Communities

Sets of nodes with of
connections and

to (the rest
of the network)
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Finding Network Communities

¥,

A7 Y g
bR
V2
R

ldeally such automatically
detected clusters would
then correspond to real
groups
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Micro-Markets in Sponsored Search

Find micro-markets by partitioning the
“query x advertiser” graph:

query

sporkts
betting .

advertiser
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Social Network Data

Observe social ties and rivalries in a university karate club
During his observation, conflicts led the group to split
Split could be explained by a minimum cut in the network
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[Backstrom et al. KDD ‘06]

Group Formation in Networks

In a social network O\ \
\ O
Facebook groups, Publication venue =7 \
Can think of groups as N \O/
Ay
Gives
Recruits friends? Memberships spread \ \
along edges \®
Doesn’t recruit? Spread randomly -7 \
\

/
N
i

/O
@
30
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Group Growth as Diffusion

Group memberships
spread over the network:

circles represent \
existing group members
squares may join | .
N

N\
| ——
How does prob. of joining ? | —
a group depend on the /‘

number of friends already
in the group?
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[Backstrom et al. KDD ‘06]

P(join) vs. # friends in the group

Probability of joining a community when k friends are already members

Probability of joining a conference when

k coauthors are already 'members’ of that conference

0.02 b % ] H I H ’ , {] H 0.08 y u,
- 0015 {/;V ﬁﬂ“‘*ﬂ H[ H \/% Il* 0.06 /} [ /}\ E\\\!// i
g; -r;{/g %/%% 1 ] § )}/{ % S '_ \ / 'L/’
0.01 x/l = vosl /}_/,,
/ LiveJournal: X _
oos| [ 1 million users - yd PR Rl
* 250,000 groups ’ /)" 100,000 authors
. . A 2,000 conferences
Probability of joining increases with the
number of friends in the group
But increases get smaller and smaller
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Groups: More Subtle Features

x and y have three friends in the group

X’s friends are

y's friends are all O
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[Backstrom et al. KDD ‘06]

Connectedness of Friends

Competing sociological theories: O
[Granovetter ‘73]
[Coleman '88] Oo o
o : Q

Unconnected friends give independent support

Safety/trust advantage in having friends
who know each other

11/9/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 34



Connectedness of Friends

Probability of joining a community versus adjacent pairs of friends in the community

0.008 . . . |
. s 3 friends
LiveJournal: 1 million users, 250,000 groups 4 friends —
< Trends
0.008 |- _

Social capital argument wins!

DDD? i L] Ll L] L] Ll 7
Prob. of joining increases with the
> 0006 - number of adjacent members. |
& 0.005 _ 1
0.004 | T )> T W | 3{:"
0.002 S ' ' 1 |
0 0.2 0.4 0.6 0.8 1

Proportion of Pairs Adjacent
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[Backstrom et al. KDD ‘06]

So, This Means That

A person is more likely to
join a group if
she has more friends who
are already in the group

friends have more
connections between
themselves
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Community Detection

We will work with undirected (unweighted) networks
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Method 1: Strength of Weak Ties

Edge strengths (call volume) Edge betweenness
in real network in real network
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[Girvan-Newman ‘02]

Method 1: Girvan-Newman

Divisive hierarchical clustering based on the
notion of edge

Undirected unweighted networks

Calculate betweenness of edges
Remove edges with highest betweenness

Connected components are communities

Gives a hierarchical decomposition of the network
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Girvan-Newman: Example

Need to re-compute
betweenness at
every step
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Girvan-Newman: Example




Irvan-Newman: Results
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Girvan-Newman: Results

hierarchical decomposition

Dﬂﬂﬂﬂﬂhﬂ

] H[{

= Ld L3 L3 FJ L3 Fa P
B & i & = Y L 5
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We need to resolve 2 questions
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How to Compute Betweenness?
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How to Compute Betweenness?

11/9/2011

# shortest A-J paths =
# shortest A-G paths +
# shoriest A-H paths

# shortest A-l paths =
# shortest A-F paths +
# shortest A-G paths

# shortest A-K paths
= # shortest A-| paths
+ # shortest A-J paths
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How to Compute Betweenness?

If there are multiple paths count them

fractionally ﬂ\
The algorithm: 1 o e : ] :
*Add edge flows:

-- node flow =
1+ child edges 1+1 paths to H
—- split the flow up . 1 2 gplit evenly
based on the parent

value
» Repeat the BFS 3 d b q 1+0.5 pathsto J
procedure for each Split1:2
starting node
6 5 1 path to K.
Split evenly
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How to Compute Betweenness?

If there are multiple paths count them

fractionally ﬁ\

2 2 4 2

The algorithm:
*Add edge flows: 1 1 ;[D 1%) 1

-- node flow = 1 1 5 1 1

1+ child edges 1+1 paths to H

-- split the flow up é 2 @ 1 @ 2 gplit evenly
based on the parent ’ i " 1
value
« Repeat the BFS 3 d b g 1+0-5pathstoJ
procedure for each Split 1:2

starting node
5 1 path to K.
Split evenly
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How to select number of clusters?

Define to be
Q = (number of edges within groups) —
(expected number within groups)

{ | if there is an edge (i, j),
Af'}' —

0 otherwise.

kik i
Expected number = ——7 .
2m

m...number of edges
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Modularity: Definition

Q = (number of edges within groups) —
(expected number within groups)

} k k m ... number of edges
A” . 1if (1,) is edge, else O
Q — E , A| T 5(C| y C. ) ki ... degree of node i
C; ... group id of node i
6(a b) ... 1if a=b, else O

It is positive if the number of edges within groups
exceeds the expected number

0.3<Q<0.7 means significant community structure
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Modularity: Number of clusters

o © o © ©
0 e N e Dn

Why not optimize modularity directly?
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