Decision Based Models of Cascades

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

RECAP: Game Theoretic Model of Cascades

[Morris 2000] Game Theoretic Model of Cascades

Based on 2 player coordination game

- 2 players each chooses technology A or B
- Each person can only adopt one "behavior", A or B
- You gain more payoff if your friend has adopted the same behavior as you

Local view of the network of node v

The Model for Two Nodes

Payoff matrix:

- If both v and w adopt behavior A, they each get payoff a>0
- If v and w adopt behavior B, they reach get payoff b>0
- If v and w adopt the opposite behaviors, they each get 0

In some large network:

- Each node v is playing a copy of the game with each of its neighbors
- Payoff: sum of node payoffs per game

Calculation of Node v

Threshold: v choses A if p > q $q = \frac{b}{a+b}$

Let v have d neighbors

Assume fraction p of v's neighbors adopt A

 Payoff_v = a·p·d if v chooses A = b·(1-p)·d if v chooses B
 Thus: v chooses A if: a·p·d > b·(1-p)·d

Extending the Model: Allow People to Adopt A and B

Cascades & Compatibility

So far:

- Behaviors A and B compete
- Can only get utility from neighbors of same behavior: A-A get a, B-B get b, A-B get 0

Let's add extra strategy "A-B"

- AB-A: gets a
- AB-B: gets b
- AB-AB: gets max(a, b)
- Also: Some cost c for the effort of maintaining both strategies (summed over all interactions)

Cascades & Compatibility: Model

- Every node in an infinite network starts with B
- Then a finite set S initially adopts A
- Run the model for *t=1,2,3,...*
 - Each node selects behavior that will optimize payoff (given what its neighbors did in at time t-1)

Example

- Path: Start with all Bs, a>b (A is better)
- One node switches to A what happens?
 - With just A, B: A spreads if $b \le a$
 - With A, B, AB: Does A spread?
- Assume a=2, b=3, c=1

Example

Let a=5, b=3, c=1

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

For what pairs (c,a) does A spread?

A

- Infinite path, start with all Bs
- Payoffs for w: A:a, B:1, AB:a+1-c
- What does node w in A-w-B do?

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

B

W

For what pairs (c,a) does A spread?

Same reward structure as before but now payoffs for w change: A:a, B:1+1, AB:a+1-c

AB

- Notice: Now also AB spreads
- What does node w in AB-w-B do?

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

B

W

For what pairs (c,a) does A spread?

Joining the two pictures:

Lesson

- You manufacture default B and new/better A comes along:
 - Infiltration: If B is too compatible then people will take on both and then drop the worse one (B)
 - Direct conquest: If A makes itself not compatible – people on the border must choose. They pick the better one (A)
 - Buffer zone: If you choose an optimal level then you keep a static "buffer" between A and B

Decision Based Model: Herding

[Banerjee '92] Decision Based Model: Herding

Influence of actions of others

 Model where everyone sees everyone else's behavior

Sequential decision making

- Example: Picking a restaurant
 - Consider you are choosing a restaurant in an unfamiliar town
 - Based on Yelp reviews you intend to go to restaurant A
 - But then you arrive there is no one eating at A but the next door restaurant B is nearly full

What will you do?

 Information that you can infer from other's choices may be more powerful than your own

Herding: Structure

Herding:

- There is a decision to be made
- People make the decision sequentially
- Each person has some private information that helps guide the decision
- You can't directly observe private information of the others but can see what they do
 - You can make inferences about the private information of others

Herding: Simple Experiment

- Consider an urn with 3 marbles. It can be either:
 - Majority-blue: 2 blue, 1 red, or
 - Majority-red: 1 blue, 2 red
- Each person wants to **best guess** whether the urn is majority-blue or majority-red
 - Guess red if P(majority-red | what she has seen or heard) > ½
- **Experiment:** One by one each person:
 - Draws a marble
 - Privately looks are the color and puts the marble back
 - Publicly guesses whether the urn is majority-red or majority-blue
- You see all the guesses beforehand. How should you make your guess?

Herding: What Happens?

See ch. 16 of Easley-Kleinberg for formal analysis

- Informally, What happens?
 - #1 person: Guess the color you draw from the urn.
 - #2 person: Guess the color you draw from the urn. Why?
 - If same color as 1st, then go with it
 - If different, break the tie by doing with your own color

#3 person:

- If the two before made different guesses, go with your color
- Else, go with their guess (regardless your color) cascade starts!

#4 person:

- Suppose the first two guesses were R, you go with R
 - Since 3rd person always guesses R
- Everyone else guesses R (regardless of their draw)

Herding: Three Ingredients

Three ingredients:

State of the world:

Whether the urn is MR or MB

Payoffs:

Utility of making a correct guess

Signals:

- Models private information:
 - The color of the marble that you just draw
- Models public information:
 - The MR vs MB guesses of people before you

Sequential Decision Making

- **Decision:** Guess MR if $P(MR | past actions] > \frac{1}{2}$
- Analysis (Bayes rule):
 - #1 follows her own color (private signal)!

• Why?
$$P(MR | r] = \frac{P(MR)P(r | MR)}{P(r)} = \frac{1/2 \cdot 2/3}{1/2} = 2/3$$

 $P(r) = P(r | MB)P(MB) + P(r | MR)P(MR) = \frac{1}{23} + \frac{1}{23} = 1/2$

- #2 guesses her own color (private signal)!
 - #2 knows #1 revealed her color. So, #2 gets 2 colors.
 - If they are the same, decision is easy.
 - If not, break the tie in favor of her own color

Sequential Decision Making

#3 follows majority signal!

- Knows #1, #2 acted on their colors. So, #3 gets 3 signals.
- If #1 and #2 made opposite decisions, #3 goes with her own color. Future people will know #3 revealed its signal P(MR | r,r,b] = 2/3
- If #1 and #2 made same choice, #3's decision conveyed no info. Cascade has started!
- How does this unfold? You are N-th person
 - #MB = #MR : you guess your color
 - #MB #MR|=1 : your color makes you indifferent, or reinforces you guess
 - |**#MB #MR** $| \ge 2$: Ignore your signal. Go with majority.

Sequential Decision Making

Cascade begins when the difference between the number of blue and red guesses reaches 2

Herding: Observations

Easy to occur given the right structural conditions

Can lead to bizarre patterns of decisions

Non-optimal outcomes

With prob. ⅓⋅⅓=⅓ first two see the wrong color, from then on the whole population guesses wrong

Can be very fragile

- Suppose first two guess blue
- People 100 and 101 draw red and cheat by showing their marbles
- Person 102 now has 4 pieces of information, she guesses based on her own color
- Cascade is broken

Empirical Studies of Cascading Behavior

Modeling Cascading Behavior

- Basis for models:
 - Probability of adopting new behavior depends on the number of friends who have already adopted

Prob. of adoption

^orob. of adoption

k = number of friends adopting

Diminishing returns: Viruses, Information k = number of friends adopting

Critical mass: Decision making

Adoption Curve: LiveJournal

- Group memberships spread over the network:
 - Red circles represent existing group members
 - Yellow squares may join
- Question:
 - How does prob. of joining a group depend on the number of friends already in the group?

[Backstrom et al., KDD '06]

Adoption Curve: LiveJournal

LiveJournal group membership

Diffusion in Viral Marketing

Senders and followers of recommendations receive discounts on products

Data: Incentivized Viral Marketing program

- 16 million recommendations
- 4 million people, 500k products

Adoption Curve: Validation

What are We Really Measuring?

For viral marketing:

We see that node v receiving the *i*-th recommendation and then purchased the product

• For groups:

- At time t we see the behavior of node v's friends
 Good questions:
 - When did v become aware of recommendations or friends' behavior?
 - When did it translate into a decision by v to act?
 - How long after this decision did v act?

Cascading of Product Recommendations & Purchases

Diffusion in Viral Marketing

- Large Anonymous online retailer (June 2001 to May 2003)
 - 15,646,121 recommendations
 - 3,943,084 distinct customers
 - 548,523 products recommended
 - Products belonging to 4 product groups:
 - Books, DVDs, music, VHS

Important:

- You can only make recommendations when you buy
- Only the 1st person to respond to a recommendation gets 10% discount, recommender gets 10% credit

Viral Marketing: Subtle Features

What role does the product category play?

	products	customers	recommenda- tions	edges	buy + get discount	buy + no discount
Book	103,161	2,863,977	5,741,611	2,097,809	65,344	17,769
DVD	19,829	805,285	8,180,393	962,341	17,232	58,189
Music	393,598	794,148	1,443,847	585,738	7,837	2,739
Video	26,131	239,583	280,270	160,683	909	467
Full	542,719	3,943,084	15,646,121	3,153,676	91,322	79,164

high Iow

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

DVD Recommendation Network

- purchase following a recommendation
- customer recommending a product
- customer not buying a recommended product

Observations:

- Majority of recommendations do not cause purchases nor propagation
- Notice many star-like patterns
- Many disconnected components

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Cascade Formation Process

Measuring Cascade Sizes

How big are cascades?

- Delete late recommendations
- Count how many people are in a single cascade
- Exclude nodes that did not buy

39

Cascade Size: DVDs

- DVD cascades can grow large
- Possibly as a result of websites where people sign up to exchange recommendations

More Subtle Features

Does sending more recommendations influence more purchases?

BOOKS

DVDs

More Subtle Features

What is the effectiveness of subsequent recommendations?

BOOKS

Observations on Product Groups

- We have relatively few DVD titles, but DVDs account for ~ 50% of all recommendations
- Recommendations per person
 - DVD: 10
 - books and music: 2
 - VHS: 1
- Recommendations per purchase
 - books: 69
 - DVDs: 108
 - music: 136
 - VHS: 203
- Overall there are 3.69 recommendations per node on 3.85 different products
- Music recommendations reached about the same number of people as DVDs but used only 20% as many recommendations
- Book recommendations reached by far the most people 2.8 million
- All networks have a very small number of unique edges
 - For books, videos and music the number of unique edges is smaller than the number of nodes the networks are highly disconnected

Product Characteristics

- consider successful recommendations in terms of
 - av. # senders of recommendations per book category
 - av. # of recommendations accepted
- books overall have a 3% success rate
 - (2% with discount, 1% without)
- Iower than average success rate (significant at p=0.01 level)
 - fiction
 - romance (1.78), horror (1.81)
 - teen (1.94), children's books (2.06)
 - comics (2.30), sci-fi (2.34), mystery and thrillers (2.40)
 - nonfiction
 - sports (2.26)
 - home & garden (2.26)
 - travel (2.39)
- higher than average success rate (statistically significant)
 - professional & technical
 - medicine (5.68)
 - professional & technical (4.54)
 - engineering (4.10), science (3.90), computers & internet (3.61)
 - law (3.66), business & investing (3.62)

Anime DVDs

- 47,000 customers responsible for the 2.5 out of 16 million recommendations in the system
- 29% success rate per recommender of an anime DVD
- Giant component covers 19% of the nodes
- Overall, recommendations for DVDs are more likely to result in a purchase (7%), but the anime community stands out

Predicting Recommendation Success

Variable	transformation	Coefficient		
const		-0.940 ***		
# recommendations	In(r)	0.426 ***		
# senders	In(n _s)	-0.782 ***		
# recipients	In(n _r)	-1.307 ***		
product price	ln(p)	0.128 ***		
# reviews	ln(v)	-0.011 ***		
avg. rating	ln(t)	-0.027 *		
R ²		0.74		

significance at the 0.01 (***), 0.05 (**) and 0.1 (*) levels

Viral Marketing: Not spreading virally

- 94% of users make first recommendation without having received one previously
- Size of giant connected component increases from 1% to 2.5% of the network (100,420 users) small!

Some sub-communities are better connected

- 24% out of 18,000 users for westerns on DVD
- 26% of 25,000 for classics on DVD
- 19% of 47,000 for anime (Japanese animated film) on DVD

Others are just as disconnected

- 3% of 180,000 home and gardening
- 2-7% for children's and fitness DVDs

Viral Marketing: Consequences

Products suited for Viral Marketing:

- small and tightly knit community
 - few reviews, senders, and recipients
 - but sending more recommendations helps
- pricey products
- rating doesn't play as much of a role
- **Observations for future diffusion models:**
- purchase decision more complex than threshold or simple infection
- influence saturates as the number of contacts expands
- links user effectiveness if they are overused

Conditions for successful recommendations:

- professional and organizational contexts
- discounts on expensive items
- small, tightly knit communities