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 Spreading through 
networks: 
 Cascading behavior 
 Diffusion of innovations 
 Network effects 
 Epidemics 

 

 Behaviors that cascade 
from node to node like 
an epidemic 

 Examples: 
 Biological:  
 Diseases via contagion 

 Technological: 
 Cascading failures 
 Spread of information 

 Social: 
 Rumors, news, new 

technology 
 Viral marketing 
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 Product adoption: 
 Senders and followers of recommendations 
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 Behavior/contagion spreads over the edges 
of the network 

 It creates a propagation tree, i.e., cascade 
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Cascade  
(propagation graph) Network 

Terminology: 
• Stuff that spreads: Contagion 
• “Infection” event: Adoption, infection, activation 
• We have: Infected/active nodes, adoptors 



 Probabilistic models: 
 Models of influence or disease spreading 
 An infected node tries to “push” 

the contagion to an uninfected node 
 Example: 
 You “catch” a disease with some prob.  

from each active neighbor in the network 
 Decision based models: 
 Models of product adoption, decision making 
 A node observes decisions of its neighbors  

and makes its own decision 
 Example: 
 You join demonstrations if k of your friends do so too 
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 Collective Action [Granovetter, ‘78] 
 Model where everyone sees everyone  

else’s behavior 
 Examples: 
 Clapping or getting up and leaving in a theater 
 Keeping your money or not in a stock market 
 Neighborhoods in cities changing ethnic composition 
 Riots, protests, strikes 
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[Granovetter ‘78] 



 n people – everyone observes all actions 
 Each person i has a threshold ti 
 Node i will adopt the behavior iff at  

least ti other people are adopters: 
 Small ti: early adopter 
 Large ti: late adopter 

 
 

 The population is described by {t1,…,tn} 
 F(x) … fraction of people with threshold ti ≤  x 
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 Think of the step-by-step change in number of  
people adopting the behavior: 
 F(x) … fraction of people with threshold ≤  x 
 s(t) … number of participants at time t 

 

 Easy to simulate: 
 s(0) = 0 
 s(1) = F(0) 
 s(2) = F(s(1)) = F(F(0)) 
 s(t+1) = F(s(t)) = Ft+1(0) 

 

 Fixed point: F(x)=x 
 There could be other fixed  

points but starting from 0  
we never reach them 
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Iterating to y=F(x). 
Fixed point. 

F(0) 

y=
F(

x)
 



 What if we start the process somewhere else? 
 We move up/down to the next fixed point  
 How is market going to change? 
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Robust 
fixed point 

Fragile 
fixed point 



 Each threshold ti is drawn independently from 
some distribution F(x) = Pr[thresh ≤ x] 
 Suppose: Normal with  µ=n/2, variance σ 
Small σ:     Large σ: 
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Bigger variance let’s you build a bridge from early adopters to mainstream 

Small σ Medium σ 

F(x) F(x) 

No cascades! Small cascades 

Fixed point 
is low 
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But if we increase the variance even more we move the higher fixed point lover 

Big σ Huge σ 

Big cascades! 

Fixed point 
gets lower! 

Fixed point 
is high! 



 It does not take into account: 
 No notion of social network – more influential 

users 
 It matters who the early adopters are, not just 

how many 
 Models people’s awareness of size of participation 

not just actual number of people participating 
 Modeling thresholds 
 Richer distributions 
 Deriving thresholds from more basic assumptions 
 game theoretic models 
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 It does not take into account: 
 Modeling perceptions of who is adopting the 

behavior/ who you believe is adopting 
 Non monotone behavior – dropping out if too 

many people adopt 
 Similarity – thresholds not based only on numbers 
 People get “locked in” to certain choice over a 

period of time 
 

 Network matters! (next slide) 
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 Based on 2 player coordination game 
 2 players – each chooses technology A or B 
 Each person can only adopt one “behavior”, A or B 
 You gain more payoff if your friend has adopted the 

same behavior as you 
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[Morris 2000] 

Local view of the 
network of node v 
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 Payoff matrix: 
 If both v and w adopt behavior A,  

they each get payoff a>0 
 If v and w adopt behavior B,  

they reach get payoff b>0 
 If v and w adopt the opposite  

behaviors, they each get 0 
 

 In some large network: 
 Each node v is playing a copy of the  

game with each of its neighbors 
 Payoff: sum of node payoffs per game 
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 Let v have d neighbors 
 Assume fraction p of v’s neighbors adopt A 
 Payoffv = a∙p∙d  if v chooses A 

  = b∙(1-p)∙d  if v chooses B 
 Thus: v chooses A if: a∙p∙d > b∙(1-p)∙d 

ba
bq
+

=

Threshold: 
v choses A if p>q 



 Scenario:  
Graph where everyone starts with B.  
Small set S of early adopters of A  
 Hard wire S – they keep using A no matter  

what payoffs tell them to do 
 

 Payoffs are set in such a way that nodes say:  
If at least 50% of my friends are red I’ll be red 
 (this means: a = b+ε) 
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If more than 
50% of my 
friends are red 
I’ll be red 
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If more than 
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},{ vuS =



 Observation: 
 The use of A spreads monotonically  

(Nodes only switch from B to A, but never back to B) 
 Why? Proof sketch: 
 Nodes keep switching from B to A: B→A 
 Now, suppose some node switched back from A→B, 

consider the first node v to do so (say at time t) 
 Earlier at time t’ (t’<t) the same node v switched B→A 
 So at time t’ v was above threshold for A 
 But up to time t no node switched back to B, so node v 

could only had more neighbors who used A at time t 
compared to t’. There was no reason for v to switch. 
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!! Contradiction !! 



 Consider infinite graph G  
 (but each node has finite number of neighbors) 

 We say that a finite set S causes a cascade in 
G with threshold q if, when S adopts A, 
eventually every node adopts A 

 Example: Path 
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ba
bq
+

=

v choses A if p>q 

If q<1/2 then cascade occurs  

S 
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S 

S 

If q<1/3 then  
cascade occurs  

 Infinite Tree: 
 
 
 
 

 Infinite Grid: 

If q<1/4 then  
cascade occurs  



 Def:  
 The cascade capacity of a graph G is the largest q 

for which some finite set S can cause a cascade 
 Fact:  
 There is no G where cascade capacity > ½ 

 Proof idea: 
 Suppose such G exists: q>½,  

finite S causes cascade 
 Show contradiction: Argue that  

nodes stop switching after a  
finite # of steps 
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X 



 Fact: There is no G where cascade capacity > ½ 
 Proof sketch: 
 Suppose such G exists: q>½, finite S causes cascade 
 Contradiction: Switching stops after a finite # of steps 
 Define “potential energy” 
 Argue that it starts finite (non-negative)  

and strictly decreases at every step 
 “Energy”: = |dout(X)| 

 |dout(X)| := # of outgoing edges of active set X 
 The only nodes that switch have a  

strict majority of its neighbors in S 
 |dout(X)| strictly decreases 
 It can do so only a finite number of steps 
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 What prevents cascades from spreading? 
 Def: Cluster of density ρ is a set of nodes C 

where each node in the set has at least ρ 
fraction of edges in C. 
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ρ=3/5 ρ=2/3 



 Let S be an initial set of adopters of A 
 All nodes apply threshold q to decide  

whether to switch to A 
 Two facts: 
 1) If G\S contains a cluster of density >(1-q)  

then S can not cause a cascade 
 2) If S fails to create a cascade, then  

there is a cluster of density >(1-q) in G\S 
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 So far:  
 Behaviors A and B compete 
 Can only get utility from neighbors of same 

behavior: A-A get a, B-B get b, A-B get 0 
 Let’s add extra strategy “A-B” 
 AB-A: gets a 
 AB-B: gets b 
 AB-AB: gets max(a, b) 
 Also: Some cost c for the effort of maintaining  

both strategies (summed over all interactions) 
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 Every node in an infinite network starts with B 
 Then a finite set S initially adopts A 
 Run the model for t=1,2,3,… 
 Each node selects behavior that will optimize 

payoff (given what its neighbors did in at time t-1) 
 
 

 
 
 
 
 
 

 How will nodes switch from B to A or AB? 
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B A A AB a a a+b-c AB 
b 

Edge payoff 



 Path: Start with all Bs, a>b (A is better)  
 One node switches to A – what happens? 
 With just A, B: A spreads if b ≤ a  
 With A, B, AB: Does A spread?  

 Assume a=2, b=3, c=1 
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B A A 
a=2 

B B 
0 b=3 b=3 

B A A 
a=2 

B B 
a=2 b=3 b=3 

AB 

-1 

Cascade stops 



 Let a=5, b=3, c=1 
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B A A 
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-1 
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AB 

-1 

AB 
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 Infinite path, start with all Bs 
 Payoffs: A:a, B:1, AB:a+1-c 
 What does node w in A-w-B do? 
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 Payoffs: A:a, B:2, AB:a+2-c 
 Notice: now also AB spreads 
 What does node w in AB-w-B do? 
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 Joining the two pictures: 
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 You manufacture default B and 
new/better A comes along: 
 Infiltration: If you make B  

too compatible then people  
will take on both and then  
drop the worse one (B) 
 Direct conquest: If A makes  

itself not compatible – people 
on the border must choose.  
They pick the better one (A) 
 Buffer zone: If you choose an  

optimal level then you keep  
a static “buffer” between A and B 
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B→AB B→AB → A 

A spreads 
B → A 
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