Diffusion and Cascading Behavior in Networks

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Spreading Through Networks

- Spreading through networks:
 - Cascading behavior
 - Diffusion of innovations
 - Network effects
 - Epidemics
- Behaviors that cascade from node to node like an epidemic

- Examples:
 - Biological:
 - Diseases via contagion
 - Technological:
 - Cascading failures
 - Spread of information
 - Social:
 - Rumors, news, new technology
 - Viral marketing

Information Diffusion

Diffusion in Viral Marketing

- Product adoption:
 - Senders and followers of recommendations

Spread of Diseases

Network Cascades

- Behavior/contagion spreads over the edges of the network
- It creates a propagation tree, i.e., cascade

Cascade (propagation graph)

Terminology:

- Stuff that spreads: Contagion
- "Infection" event: Adoption, infection, activation
- We have: Infected/active nodes, adoptors

How to Model Diffusion?

Probabilistic models:

- Models of influence or disease spreading
 - An infected node tries to "push" the contagion to an uninfected node

Example:

You "catch" a disease with some prob. from each active neighbor in the network

Decision based models:

- Models of product adoption, decision making
 - A node observes decisions of its neighbors and makes its own decision

Example:

You join demonstrations if k of your friends do so too

Decision Based Model of Diffusion

Decision Based Models

- Collective Action [Granovetter, '78]
 - Model where everyone sees everyone else's behavior
 - Examples:
 - Clapping or getting up and leaving in a theater
 - Keeping your money or not in a stock market
 - Neighborhoods in cities changing ethnic composition
 - Riots, protests, strikes

Collective Action: The Model

- n people everyone observes all actions
- Each person i has a threshold t_i
 - Node i will adopt the behavior iff at least t_i other people are adopters:
 - Small t_i: early adopter
 - Large t_i: late adopter

- The population is described by {t₁,...,t_n}
 - F(x) ... fraction of people with threshold $t_i \leq x$

Collective action: Dynamics

- Think of the step-by-step change in number of people adopting the behavior:
 - F(x) ... fraction of people with threshold $\leq x$
 - s(t) ... number of participants at time t
- Easy to simulate:

$$-$$
 s(0) = 0

$$s(1) = F(0)$$

$$s(2) = F(s(1)) = F(F(0))$$

- $s(t+1) = F(s(t)) = F^{t+1}(0)$
- Fixed point: F(x)=x
 - There could be other fixed points but starting from 0 we never reach them

Starting Elsewhere

- What if we start the process somewhere else?
 - We move up/down to the next fixed point
 - How is market going to change?

Fragile vs. Robust Fixed Point

Discontinuous transition

■ Each threshold t_i is drawn independently from some distribution $F(x) = Pr[thresh \le x]$

• Suppose: Normal with $\mu=n/2$, variance σ

Small σ : Large σ :

Discontinuous transition

Bigger variance let's you build a bridge from early adopters to mainstream

Discontinuous transition

But if we increase the variance even more we move the higher fixed point lover

Weaknesses of the model

It does not take into account:

- No notion of social network more influential users
- It matters who the early adopters are, not just how many
- Models people's awareness of size of participation not just actual number of people participating

Modeling thresholds

- Richer distributions
- Deriving thresholds from more basic assumptions
 - game theoretic models

Weaknesses of the model

- It does not take into account:
 - Modeling perceptions of who is adopting the behavior/ who you believe is adopting
 - Non monotone behavior dropping out if too many people adopt
 - Similarity thresholds not based only on numbers
 - People get "locked in" to certain choice over a period of time
- Network matters! (next slide)

Game Theoretic Model of Cascades

Game Theoretic Model of Cascades

- Based on 2 player coordination game
 - 2 players each chooses technology A or B
 - Each person can only adopt one "behavior", A or B
 - You gain more payoff if your friend has adopted the same behavior as you

Local view of the network of node v

Example: BlueRay vs. HD DVD

The Model for Two Nodes

Payoff matrix:

- If both v and w adopt behavior A, they each get payoff a>0
- If v and w adopt behavior B, they reach get payoff b>0
- If v and w adopt the opposite behaviors, they each get 0

In some large network:

- Each node v is playing a copy of the game with each of its neighbors
- Payoff: sum of node payoffs per game

A

B

w

 $egin{array}{c|c} A & B \\ \hline a, a & 0, 0 \\ 0, 0 & b, b \\ \hline \end{array}$

Calculation of Node v

Threshold:

v choses A if p>q

$$q = \frac{b}{a+b}$$

- Let v have d neighbors
- Assume fraction p of v's neighbors adopt A

Payoff_v =
$$a \cdot p \cdot d$$
 if v chooses A
= $b \cdot (1-p) \cdot d$ if v chooses B

■ Thus: v chooses A if: $a \cdot p \cdot d > b \cdot (1-p) \cdot d$

Scenario:

Graph where everyone starts with B. Small set S of early adopters of A

- Hard wire S they keep using A no matter what payoffs tell them to do
- Payoffs are set in such a way that nodes say:
 If at least 50% of my friends are red I'll be red
 (this means: a = b+ε)

Monotonic Spreading

Observation:

- The use of A spreads monotonically (Nodes only switch from B to A, but never back to B)
- Why? Proof sketch:
 - Nodes keep switching from B to A: $B \rightarrow A$
 - Now, suppose some node switched back from $A \rightarrow B$, consider the **first** node v to do so (say at time t)
 - Earlier at time t'(t' < t) the same node v switched $B \rightarrow A$
 - So at time t'v was above threshold for A
 - But up to time t no node switched back to B, so node v could only had more neighbors who used A at time t compared to t'. There was no reason for v to switch.

!! Contradiction !!

Infinite Graphs

v choses A if p>q

Consider infinite graph G

- $q = \frac{b}{a+b}$
- (but each node has finite number of neighbors)
- We say that a finite set S causes a cascade in G with threshold q if, when S adopts A, eventually every node adopts A
- Example: PathIf q<1/2 then cascade occurs

Infinite Graphs

Infinite Tree:

If q<1/3 then cascade occurs

Infinite Grid:

If q<1/4 then cascade occurs

Cascade Capacity

Def:

 The cascade capacity of a graph G is the largest q for which some finite set S can cause a cascade

Fact:

There is no G where cascade capacity > ½

Proof idea:

- Suppose such G exists: q>½, finite S causes cascade
- Show contradiction: Argue that nodes stop switching after a finite # of steps

Cascade Capacity

- Fact: There is no G where cascade capacity > ½
- Proof sketch:
 - Suppose such G exists: q>½, finite S causes cascade
 - Contradiction: Switching stops after a finite # of steps
 - Define "potential energy"
 - Argue that it starts finite (non-negative) and strictly decreases at every step
 - "Energy": = |dout(X)|
 - | dout(X)| := # of outgoing edges of active set X
 - The only nodes that switch have a strict majority of its neighbors in S
 - | dout(X) | strictly decreases
 - It can do so only a finite number of steps

Stopping Cascades

- What prevents cascades from spreading?
- Def: Cluster of density ρ is a set of nodes C where each node in the set has at least ρ fraction of edges in C.

Stopping Cascades

- Let S be an initial set of adopters of A
- All nodes apply threshold q to decide whether to switch to A
- Two facts:
 - 1) If G\S contains a cluster of density >(1-q)
 then S can not cause a cascade
 - 2) If S fails to create a cascade, then there is a cluster of density >(1-q) in G\S

Extending the model: Allow people to adopt A and B

Cascades & Compatibility

So far:

- Behaviors A and B compete
- Can only get utility from neighbors of same behavior: A-A get a, B-B get b, A-B get 0
- Let's add extra strategy "A-B"
 - AB-A: gets a
 - *AB-B*: gets *b*
 - AB-AB: gets max(a, b)
 - Also: Some cost c for the effort of maintaining both strategies (summed over all interactions)

Cascades & Compatibility: Model

- Every node in an infinite network starts with B
- Then a finite set S initially adopts A
- Run the model for t=1,2,3,...
 - Each node selects behavior that will optimize payoff (given what its neighbors did in at time t-1)

How will nodes switch from B to A or AB?

Example

- Path: Start with all Bs, a>b (A is better)
- One node switches to A what happens?
 - With just A, B: A spreads if $b \le a$
 - With A, B, AB: Does A spread?
- Assume a=2, b=3, c=1

Cascade stops

Example

Let a=5, b=3, c=1

For what pairs (c,a) does A spread?

- Infinite path, start with all Bs
- Payoffs: A:a, B:1, AB:a+1-c
- What does node w in A-w-B do?

For what pairs (c,a) does A spread?

- Payoffs: A:a, B:2, AB:a+2-c
- Notice: now also AB spreads

What does node w in AB-w-B do?

For what pairs (c,a) does A spread?

Joining the two pictures:

Lesson

You manufacture default B and new/better A comes along:

- Infiltration: If you make B too compatible then people will take on both and then drop the worse one (B)
- Direct conquest: If A makes itself not compatible – people on the border must choose. They pick the better one (A)
- Buffer zone: If you choose an optimal level then you keep a static "buffer" between A and B

