Assistive technologies

Stefano Chessa

Dipartimento di Informatica, Università di Pisa Lezione TFA, 21 Maggio 2015

Background

Step counter

Hearth rate

Sensors in smartphones

Fall detector

Blood pressure

Trend in sensors for assistive technologies

- Devices embedding sensors and artificial intelligence
 - To analyze locally sensed data in a "intelligent" way
 - Can train the devices to recognize specific situations, movements etc.
- Advantages
 - Devices even more efficient and smaller
 - Even more pervasive...
 - ... and interoperable at high level with other users devices

Intelligent sensors in assistive technologies

- Provide solutions to recognize the activities performed by elderly or disabled
- By means of simple sensors
 - Wearable: step counters, hearth rate, accelerometers on arms/legs,...
 - Environmental: PIRs, localization, door switches, sensorized carpets,...

Intelligent sensors in assistive technologies

However, the requests for activity recognition can very demanding

- Recognize even complex user activities:
 - Relaxing
 - Exercising
 - Cooking
 - Socializing
 - ...

The challenge...

Recent projects

- "Decrease of cOgnitive decline, malnutRition and sedEntariness by elderly empowerment in lifestyle Management and social Inclusion"
- Novembre 2013 Ottobre 2016.
- Objective ICT-2013.5.1 «personalized health, active aging and independent living»

- "Robotic UBIquitous COgnitive Network"
- Aprile 2011 Marzo 2014.
- Obiettivo FP7-ICT-2009-6 "robotics and cognitive systems".

Summary of the lecture

- Presentation of RUBICON and DOREMI
- Some HW platforms
- Arduino
- An example

Robotic UBIquitous COgnitive Network EU FP7 - www.fp7rubicon.eu

RUBICON Goal

Develop self-learning robotic ecologies

Problem Addressed

Current Robotic Ecologies suffer of brittle behaviour and lack the ability to proactively and smoothly adapt to changing and evolving situations :

- Difficulty in interpreting noisy and uncertain sensors
- Excessive Reliance on Symbolic Representations
- Excessive Reliance on Humans

=> Solutions are still difficult and prohibitively costly to deploy and maintain in real world applications !

Need for learning solution

ROBOTIC ECOLOGY CONTEXT CHANGE OVER TIME

Self-Sustaining Learning - Impact

Increase

Adaptability Flexibility Robustness Fault tolerance Open new application areas

Programming Configure Train Supervise Robotic ecology

solutions

Reduce

need for

Y

A Robotic Ecology Solution

The nodes of a RUBICON ecology mutually support one another's learning:

- cooperate in using past experience to improve performance and adjust to changing situations
- shared, open and distributed learning infrastructure
- mutually self-sustaining system

RUBICON approach

Learning Layer Architecture

Learning Layer Subsystems

- Learning Network (LN)
 - Implements a distributed neural computation to produce the Learning Layer predictions
 - Embedded Echo State Networks (ESN)
- Learning Network Manager (LNM)
 - Configuration and control of the Learning Layer
 - Interface to higher RUBICON layers
- Training Manager (TM)
 - Manages the learning processes of the LN
 - Ensures LN reconfigurability

Distributed Neural Computation

- Embed learning to implement an ecology memory distributed in the environment
- Echo State Network as a parsimonious recurrent neural model capable of processing complex time-dependent data

Synaptic Communication

- Deliver local and remote sensor/neural data to the input neurons
 - Information demultiplexing
 - Quality of Service

User Movement Forecasting

SE 1000

Sound recognition and cameras

Rubicon use cases – robot navigation

Rubicon testbeds – robot navigation

RSSI anchor

Robot's mote

Decrease of cOgnitive decline, malnutRition and sedEntariness by elderly empowerment in lifestyle Management and social Inclusion EU FP7 - http://www.doremi-fp7.eu/

General objectives

- Promote an active aging lifestyle
- Contrast:
 - Cognitive decline
 - Sedentariness
 - Malnutrition
- Use of ICT technologies:
 - Cognitive games
 - Physical and social activity monitoring
 - Diet monitoring

intake and utilization of nutrients

DOREMI - Activity recognition

- Specification of the user activities to be monitored by the HAR system (3 high level classes of HAR tasks)
 - Balance assessment
 - Aim: Estimation of user balance abilities in terms of membership to a stability class
 - Key inputs: DOREMI smart carpet sensors
 - Physical activity level
 - Aim: Quantify physical activity levels and associated energy expenditure
 - Key inputs: Accelerometers and heart rate data from the DOREMI bracelet
 - Social skills
 - Aim: People encountered estimation
 - Key inputs: Environmental sensors

DOREMI – activity recognition

DOREMI - deployment

Preprocessing

- First set of features extracted from preliminary sensory data streams (sensors similar to those to be deployed in pilot sites)
 - Statistical features
 - Time series analysis features
 - □ Frequency domain features

Review Meeting- Brussels 09/12/2014

DOREMI – the balance board

Berg Balance Scale (BBS) test #1: SITTING TO STANDING INSTRUCTIONS: Please stand up. Try not to use your hand for support.

- 4 (x) able to stand without using hands and stabilize independently
- 3 () able to stand independently using hands
- 2 () able to stand using hands after several tries
- 1 () needs minimal aid to stand or stabilize
- 0 () needs moderate or maximal assist to stand

BBS assessment score: 55 Total estimated weight: 80 kg

Dietary Data flow

- Compliancy with prescribed diet
- Number of meals
- Total caloric intake
- Daily consumption of fruit, vegetables
- Weight

Sedentariness data flow

- Outdoor distance
- Number of steps per day
- Heart rate
- Balance
- Physical activity recognition

Social & cognitive Data Flow

Social:

- Number of people met & contact duration
- Time spent indoor

Cognitive:

•

. . .

- number of right anwsers
- Reaction time

Hardware platforms

Mica Motes

Cricket

AdvanticSys Mote CM 5000

Sensor network hardware

The Mica2/MicaZ platform:

- Low power CPU
 - ATMEL 128L (8 bit, 8Mhz)
- Program memory: 128 KB Flash memory
- Data memory: 4 KB RAM 512 KB Flash memory

Mica Motes: transducer board

- Example: MTS 300 CA
 - Light
 - Temperature
 - Microphone
 - Sounder
 - Accelerometer 2 axis
 - Magnetometer 2 axis

- Other boards include:
 - GPS
 - Humidity
 - Pressure
 - Additional analog and digital inputs

Other sensor boards for AdvanticSyS

An introduction to Arduino

Content

Introduction on Arduino world;

- Idea of Arduino project;
- "Arduino" employment;

• Arduino: the device;

- Models of devices;
- Models enable for your projects;
- Technical characteristics;
- Device characteristics;
- Sensors;

- Arduino: development environment;
 - How to prepare the environment;
 - IDE;
 - Sketch and its structure;
 - Language and libraries;
- Arduino: Support;
 - Libraries;
 - Forum and Support;
 - Interesting projects;
- Examples;
- Try it;

The Idea of Arduino

Arduino is an **open-source electronics prototyping platform** based on flexible, **easy-to-use** hardware and software. It's intended for artists, designers, hobbyists and anyone interested

in creating interactive objects or environments.

"Arduino"

"Arduino" is:

• Device

• IDE • Fo

• Forum

Hardware: some models

UNO

•

•

٠

٠

•

Arduino UNO

Arduino YÚN

- AVR Arduino microcontroller
 - Atmega32u4
 - Flash memory 32 Kb
 - SRAM 2.5KB
 - EEPROM 1KB
- Linux microprocessor
 - Atheros AR9331
 - RAM 64 MB DDR2
 - 16MB Flash memory

Sensors, Actuators, and Shields

- Sensors
 - Accelerometer module
 - Tilt module
 - Button module
 - Linear potentiometer
 - Rotatory potentiometer
 - Joystick module
 - Hall sensor module
 - LDR sensor module
 - Temperature sensor module
 - Touch sensor module
 - Humidity sensor
 - GPS module
 - Piezo

- Actuators
 - Led (red, blue, green, yellow)
 - Power Led module
 - Servo motors
 - Stepper motors
 - Paper panel
- For high power
 - Mosfet module
 - Relay module
- Shields
 - Bluetooth
 - GSM
 - Zigbee

Bluetooth and Xbee module

- Bluetooth[®] version 2.1 module
- It supports the EDR (Enhanced Data Rate)
- Delivers up to a 3 Mbps data rate for distances up to 20 meters

- Xbee module series 1
- Standard 802.15.4
- Set as coordinator, router, end node
- 250kbps Max data rate
- 100m range

GSM shield

- Quad-band GSM/GPRS modem
- Supports TCP/UDP and HTTP
- Speed maximum is 85.6 kbps

GPS module

- P
- Low power requirements
- Ultra-low dropout 3.3V regulator so you can power it with 3.3-5VDC in, 5V level safe inputs
- Position accuracy of 1.8 meters
- Velocity accuracy of .1 meters per second

Software: how to prepare the environment

The open-source Arduino environment makes it easy to write code and upload it to the I/O board. It runs on Windows, Mac OS X, and Linux. The environment is written in Java and based on Processing, avr-gcc, and other open source software.

Arduino IDE can be downloaded at <u>www.arduino.cc</u>

Selection Location and Type

	sketch_mar05a	Arduino 1.5.5-i	r2	- • ×		
File Edit Sketch	Tools Help					
sketch_mar05	Auto Format Archive Sketch Fix Encoding & Reloa	Auto Format Ctrl+T Archive Sketch Fix Encoding & Reload				Select your arduin
void setup() // put your	Serial Monitor	Ctrl+Shift+M		^		Select your around
} void loop () { // put your	Board	Board Port P		Arduino AVR Boards		
	Port			Arduino Yún Arduino Uno Arduino Duemilanove or Diecimila		
	Programmer B urn Bootloader					
}				Arduino Mega or Mega 2560		

Terminology

- "sketch" a program you write to run on an Arduino board
- "pin" an input or output connected to something.
 - e.g. output to an LED, input from a knob.
- *"digital"* value is either HIGH or LOW.
 - (aka on/off, one/zero) e.g. switch state
- "analog" value ranges, usually from 0-1023.
 - e.g. LED brightness, motor speed, etc.

IDE

Language

The Arduino environment is based on Atmel Atmega microcontrollers. The AVR language is a "C" environment for programming Atmel chips.

The programs can be divided in three main parts:

Sketch and its structure

void setup() {

// put your setup code here, to run once:

void loop() {

// put your main code here, to run repeatedly:

Called when a sketch starts. The setup function will only run once. Does precisely what its name suggests, and loops consecutively.

Other structure functions

- Control Structures: if then else, for, switch, while, continue, return, goto ...;
- Further Syntax: ;, {}, //, /**/, #include, #define;
- Arithmetic Operators: +, -, =, /, *, %;
- Comparison Operators: ==, !=, <, >, <=, >=;
- Boolean Operators: &&, ||, !;
- Pointer Access Operators: *, &;
- Bitwise Operators: &, |, ^, >>, <<, ~;
- Compound Operators: ++, --, ==, +=, -=, *=, /=, &=, |=;

Variables

- **Constants**: level of energy (HIGH; LOW); mode of pin(INPUT; OUTPUT; INPUT_PULLUP); led13(LED_BUILTIN);...;
- Types: word; String;...;
- Conversions: word();...;
- Variable scope and qualifiers: Volatile;...;
- Usefulness: sizeof();

Functions

Functions are distinguished according to the pin:

- Digitals: pinMode(); digitalRead(); digitalWrite();
- Analogs: analogReference(); analogRead(); analogWrite();
- Advanced I/O: tone(); noTone(); shiftOut(); shiftIn(); pulseIn();
- Time: millis(); micros(); delay(); delayMicroseconds();
- Math: min(); max(); abs(); ...;
- Trigonometry: sin(); cos(); tan();
- Random Numbers: randomSeed(); random();
- Bits and Bytes: lowByte(); highByte(); bitRead(); bitWrite(); bitSet(); bitClear(); bit();
- External Interrupts: attachInterrupt() detachInterrupt()
- Interrupts: interrupts(); noInterrupts();
- Communication: Serial; Stream;

Libraries

All Libraries for all Arduino shields and components are on:

http://www.arduino.cc/en/Reference/Libraries

Forum & Support

Support for arduino programmer: http://forum.arduino.cc

Tutorial of Arduino Owner:

Arduino Tutorial

Starter projects with Arduino:

Starter Projects

Tutorial for AdaFruit component:

- GSM and GPS
- Adafruit products

Interesting projects

- <u>Bare Conductive</u>
- Smart citizen kit
- <u>Little Robot Friends</u>
- Little Bits
- <u>Primo</u>
- Earth Make
- Annikken Andee

Let's try it

- Blink Led
- Potentiometer rotary + blink led
- Humid + Term with yun
- Volatile Button
- GPS paring