
1

Adding Constraints to Frequent Itemset
Mining

2

Why Constraints?

� Frequent pattern mining usually produces too many solution
patterns. This situation is harmful for two reasons:

1. Performance: mining is usually inefficient or, often, simply unfeasible

2. Identification of fragments of interesting knowledge blurred within a
huge quantity of small, mostly useless patterns, is an hard task.

� Constraints are the solution to both these problems:
1. they can be pushed in the frequent pattern computation exploiting them

in pruning the search space, thus reducing time and resources
requirements;

2. they provide to the user guidance over the mining process and a way of
focussing on the interesting knowledge.

� With constraints we obtain less patterns which are more
interesting. Indeed constraints are the way we use to define
what is “interesting”.

3

Problem Definition

� We indicate the frequency constraint with Cfreq

� Given a constraint C , let Th(C) = {X| C(X)} denote the set of all itemsets X
that satisfy C.

� The frequent itemsets mining problem requires to compute Th(Cfreq)

� The constrained frequent itemsets mining problem requires to compute:

Th(Cfreq) ∩ Th(C).

� I={x1, ..., xn} set of distinct literals (called items)

� X ⊆ I, X ≠ ∅, |X| = k, X is called k-itemset

� A transaction is a couple 〈tID, X〉 where X is an itemset

� A transaction database TDB is a set of transactions

� An itemset X is contained in a transaction 〈tID, Y〉 if X⊆ Y

� Given a TDB the subset of transactions of TDB in which X is contained is named
TDB[X].

� The support of an itemset X , written suppTDB(X) is the cardinality of TDB[X].

� Given a user-defined min_sup an itemset X is frequent in TDB if its support is no less
than min_sup.

4

Constrained Frequent Pattern Mining:
A Mining Query Optimization Problem

� Given a frequent pattern mining query with a set of constraints C, the
algorithm should be

� sound: it only finds frequent sets that satisfy the given constraints C

� complete: all frequent sets satisfying the given constraints C are
found

� A naïve solution (generate&test)

� Generate all frequent sets, and then test them for constraint
satisfaction

� More efficient approaches:

� Analyze the properties of constraints comprehensively

� Push them as deeply as possible inside the frequent pattern
computation.

5

Anti-Monotonicity and Succinctness

� A first work defining classes of constraints which exhibit nice

properties [Ng et al. SIGMOD’98].

� Anti-monotonicity and Succinctness are introduced

� CAP, an Apriori-like algorithm which exploits anti-

monotonicity and succinctness of constraints

� 4 classes of constraints + associated computational strategy

1. Constraints that are anti-monotone but not succinct

2. Constraints that are both anti-monotone and succinct

3. Constraints that are succinct but not anti-monotone

4. Constraints that are neither

6

Anti-Monotonicity in Constraint-Based Mining

� Anti-monotonicity:

� When an intemset S satisfies the constraint, so does any

of its subset

� Frequency is an anti-monotone constraint.

� “Apriori property”: if an itemset X does not satisfy Cfreq then
no superset of X can satisfy Cfreq.

� sum(S.Price) ≤ v is anti-monotone

� Very easy to push in the frequent itemset computation

7

Succinctness in Constraint-Based Mining

� Succinctness:

� Given A1, the set of items satisfying a succinct constraint C, then any

set S satisfying C is based on A1 , i.e., S contains a subset

belonging to A1

� Idea: whether an itemset S satisfies constraint C can be determined

based on the singleton items which are in S

� min(S.Price) ≤ v is succinct

� sum(S.Price) ≥ v is not succinct

� Optimization: If C is succinct, C is pre-counting pushable (can be

satisfied at candidate-generation time).

� Substitute the usual “Generate-Apriori” procedure with a special

candidate generation procedure.

8

CAP – computational strategies

� 4 classes of constraints + associated computational strategy

1. Constraints that are anti-monotone but not succinct

� Check them in conjunction with frequency as a unique anti-monotone
constraint

2. Constraints that are both anti-monotone and succinct

� Can be pushed at preprocessing time: min(S.Price) ≥≥≥≥ v just start the
computation with candidates all singleton items having price ≥ v

3. Constraints that are succinct but not anti-monotone

� Use the special candidate-generation function

4. Constraints that are neither

� Induce a weaker constraint which is either anti-monotone and/or
succinct

9

Converting “Tough” Constraints

� Introduced in [Pei and Han KDD’00, ICDE’01]

� Let R be an order of items

� Convertible anti-monotone

� If an itemset S violates a constraint C, so does every itemset

having S as a prefix w.r.t. R

� Ex. avg(S) ≤ v w.r.t. item value descending order

� Convertible monotone

� If an itemset S satisfies constraint C, so does every itemset having

S as a prefix w.r.t. R

� Ex. avg(S) ≥ v w.r.t. item value descending order

10

Converting “Tough” Constraints

� Examine C: avg(S.profit) ≥ 25

� Order items in value-descending order

� <a, f, g, d, b, h, c, e>

� If an itemset afb violates C

� So does afbh, afb*

� It becomes anti-monotone!

� Authors state that convertible constraints can not be pushed

in Apriori but they can be handled by FP-Growth approach.

� Two FP-Growth-based algorithms:

� FICA and FICM

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem

11

Strongly Convertible Constraints

� avg(X) ≥ 25 is convertible anti-monotone w.r.t. item
value descending order R: <a, f, g, d, b, h, c, e>

� If an itemset af violates a constraint C, so does
every itemset with af as prefix, such as afd

� avg(X) ≥ 25 is convertible monotone w.r.t. item
value ascending order R-1: <e, c, h, b, d, g, f, a>

� If an itemset d satisfies a constraint C, so does
itemsets df and dfa, which having d as a prefix

� Thus, avg(X) ≥ 25 is strongly convertible

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem

12

Monotonicity in Constraint-Based Mining

� Monotonicity

� When an intemset S satisfies the constraint, so does any

of its superset

� sum(S.Price) ≥ v is monotone

� min(S.Price) ≤ v is monotone

� They behave exactly the opposite of frequency …

� How to push them in the Apriori computation?

13

Classification of Constraints

Convertible
anti-monotone

Convertible
monotone

Strongly

convertible

Inconvertible

Succinct

Antimonotone
Monotone

14

ExAnte
ExAMiner

15

Our Problem …

… to compute itemsets which satisfy a conjunction of
anti-monotone and monotone constraints.

Why MonotoneMonotone Constraints?

1. They’re the mostmost usefuluseful in order to discover local high-value patterns (for
instance very expansive or very large itemsets which can be found only
with a very small min-sup)

2. We know how to exploit the other kinds of constraints (antimonotone,
succinct) since ’98 [Ng et al. SIGMOD’98], while for monotone constraints

the situation is more complex …

16

AM Vs. M

� State of art before ExAnte: when dealing with a conjunction of AM and M
constraints we face a tradeoff between AM and M pruning.

� Tradeoff: pushing M constraints into the computation can help pruning the
search space, but at the same time can lead to a reduction of AM pruning
opportunities.

� Our observation: this is true only if we focus exclusively on the search
space of itemsets. Reasoning on both the search space and the input TDB
together we can find the real sinergy of AM and M pruning.

� The real sinergy: do not exploit M constraints directly to prune the search
space, but use them to prune the data, which in turn induces a much
stronger pruning of the search space.

� The real sinergy of AM and M pruning lies in Data Reduction …

17

ExAnte µµµµ-reduction

Definition [µ-reduction]:

Given a transaction database TDB and a monotone constraint CM,

we define the µ-reduction of TDB as the dataset resulting from
pruning the transactions that do not satisfy CM.

Example: CM ≡ sum(X.price) ≥ 55

18

ExAnte αααα-reduction

Definition [α-reduction]:

Given a transaction database TDB, a transaction <tID,X> and a

frequency constraint Cfreq[TDB], we define the α-reduction <tID,X>
as the subset of items in X that satisfy Cfreq[TDB].

Where:

We define the α-reduction of TDB as the dataset resulting from the
α-reduction of all transactions in TDB.

Example:

19

ExAnte Properties

20

ExAnte Properties

21

A Fix-Point Computation

Shorter
transactions

Less frequent
1-itemsets

Less
Transactions

in TDB

α

µ

TDB
Less

transactions
which satisfy CM

… and so on …

until a fix-point

is reached

22

ExAnte Algorithm

23h

g

f

e

d

c

b

a

SupportItem

4

7
5

7
4

3

6

2

†

4
4

4
†

†

†

†

X

X

X

38

58

52

X

3

7
5

7
3

3

5

2

X X
X

X X
X X

X

X

X

X

50

44

14

†

4
5

5
†

†

3

†
X

X

X

X

52

44

52

ExAnte Preprocessing Example

� Min_sup = 4

� CM ≡ sum(X.price) ≥ 45

24

Experimental Results

25

Experimental Results

26

Experimental Results

27

Experimental Results

