

Why Constraints?

= Frequent pattern mining usually produces too many solution
patterns. This situation is harmful for two reasons:
1. Performance: mining is usually inefficient or, often, simply unfeasible

2. Ildentification of fragments of interesting knowledge blurred within a
huge quantity of small, mostly useless patterns, is an hard task.

= (Constraints are the solution to both these problems:

1. they can be pushed in the frequent pattern computation exploiting them
in pruning the search space, thus reducing time and resources
requirements;

2. they provide to the user guidance over the mining process and a way of
focussing on the interesting knowledge.

= With constraints we obtain less patterns which are more
Interesting. Indeed constraints are the way we use to define
what is “interesting’.

Problem Definition

= |={x,, ..., X,} setof distinct literals (called items)

» Xcl, X2, [X] =k, Xis called k-itemset

= A fransaction is a couple (tID, X) where X is an itemset

= A transaction database TDB is a set of transactions

= An itemset X is contained in a transaction (tID, Y) if Xc Y

= Given a TDB the subset of transactions of TDB in which X is contained is named
TDB[X].

» The support of an itemset X , written supprpg(X) is the cardinality of TDB[X].

= Given a user-defined min_sup an itemset X is frequent in TDB if its support is no less
than min_sup.

We indicate the frequency constraint with C.,

Given a constraint C, let Th(C) = {X| C(X)} denote the set of all itemsets X
that satisfy C.

The frequent itemsets mining problem requires to compute Th(Cy,,)

The constrained frequent itemsets mining problem requires to compute:
Th(Cy,) N Th(C).

Constrained Frequent Pattern Mining:
A Mining Query Optimization Problem

= @Given a frequent pattern mining query with a set of constraints C, the
algorithm should be
= sound: it only finds frequent sets that satisfy the given constraints C
= complete: all frequent sets satisfying the given constraints C are
found

» A naive solution (generateé&test)
= @Generate all frequent sets, and then test them for constraint
satisfaction

= More efficient approaches:
» Analyze the properties of constraints comprehensively

» Push them as deeply as possible inside the frequent pattern
computation.

Anti-Monotonicity and Succinctness

A first work defining classes of constraints which exhibit nice
properties [Ng et al. SIGMOD’98].

Anti-monotonicity and Succinctness are introduced

CAP, an Apriori-like algorithm which exploits anti-
monotonicity and succinctness of constraints

4 classes of constraints + associated computational strategy
1. Constraints that are anti-monotone but not succinct
2. Constraints that are both anti-monotone and succinct
3. Constraints that are succinct but not anti-monotone
4. Constraints that are neither

Anti-Monotonicity in Constraint-Based Mining

= Anti-monotonicity:

» When an intemset S satisfies the constraint, so does any
of its subset

» frequency is an anti-monotone constraint.

= "Apriori property”: if an itemset X does not satisfy Cy.,, then
no superset of X can satisfy Cy.,,

= sum(S.Price) <v is anti-monotone
» Very easy to push in the frequent itemset computation

Succinctness in Constraint-Based Mining

= Succinctness:

= QGiven A, the set of items satisfying a succinct constraint C, then any
set S satisfying C is based on A,, i.e., S contains a subset
belonging to A,

= |dea: whether an itemset S satisfies constraint C can be determined
based on the singleton items which are in S

= min(S.Price) <v is succinct

= sum(S.Price) > v is not succinct

» Optimization: If C is succinct, C is pre-counting pushable (can be
satisfied at candidate-generation time).

= Substitute the usual “Generate-Apriori” procedure with a special
candidate generation procedure.

CAP — computational strategies

» 4 classes of constraints + associated computational strategy
1. Constraints that are anti-monotone but not succinct

» Check them in conjunction with frequency as a unique anti-monotone
constraint

2. Constraints that are both anti-monotone and succinct

= Can be pushed at preprocessing time: min(S.Price) > v just start the
computation with candidates all singleton items having price > v

3. Constraints that are succinct but not anti-monotone
» Use the special candidate-generation function

4. Constraints that are neither

= /nduce a weaker constraint which is either anti-monotone and/or
succinct

Converting “Tough” Constraints

Introduced in [Pei and Han KDD’00, ICDE’01]

L et R be an order of items
Convertible anti-monotone

= [fan itemset S violates a constraint C, so does every itemset
having S as a prefix w.r.t. R

» Ex. avg(S) <v w.r.t. item value descending order

Convertible monotone

= [fan itemset S satisfies constraint C, so does every itemset having
S as a prefix w.r.t. R

» Ex.avg(S)=>v w.r.t item value descending order

Converting “Tough” Constraints

= Examine C: avg(S.profit) > 25
» Order items in value-descending order
»<a,f,04d Db, h,c e>
» [f an itemset afb violates C
» So does afbh, afb”
» [t becomes anti-monotone!

Item

Profit

40

0]

-20

10

-30

30

SO | (O |fo | O

20

-10

= Authors state that convertible constraints can not be pushed
in Apriori but they can be handled by FP-Growth approach.

= Two FP-Growth-based algorithms:
= FICA and FICM

10

Strongly Convertible Constraints

avg(X) =25 is convertible anti-monotone w.r.t. item
value descending order R: <a, f, g, d, b, h, c, e>

= [f an itemset af violates a constraint C, so does
every itemset with af as prefix, such as afd

Item

Profit

40

0)

avg(X) =25 is convertible monotone w.r.t. item
value ascending order R'': <e, ¢, h, b, d, g, f, a>

-20

10

» /f an itemset d satisfies a constraint C, so does

-30

itemsets df and dfa, which having d as a prefix

30

20

SO [~ O [QA|O | O

-10

Thus, avg(X) = 25 is strongly convertible

11

Monotonicity in Constraint-Based Mining

= Monotonicity

» When an intemset S satisfies the constraint, so does any
of its superset

= sum(S.Price) > v is monotone
» min(S.Price) <v is monotone

They behave exactly the opposite of frequency ...
How to push them in the Apriori computation?

12

Classification of Constraints

Monotone

convertible

Convertible ' Convertible
anti-monotone monotone

Inconvertible

13

Our Problem ...

... lo compute itemsets which satisfy a conjunction of
anti-monotone and monotone constraints.

Th(Cjreq) N Th(Car)

Why Monotone Constraints?

1. They’re the most useful in order to discover local high-value patterns (for
instance very expansive or very large itemsets which can be found only

with a very small min-sup)

2. We know how to exploit the other kinds of constraints (antimonotone,
succinct) since ‘98 [Ng et al. SIGMOD’ 98], while for monotone constraints

the situation is more complex ...

15

AMVs. M

State of art before ExAnte: when dealing with a conjunction of AM and M
constraints we face a tradeoff between AM and M pruning.

Tradeoff: pushing M constraints into the computation can help pruning the
search space, but at the same time can lead to a reduction of AM pruning
opportunities.

Our observation: this is true only if we focus exclusively on the search
space of itemsets. Reasoning on both the search space and the input TDB
together we can find the real sinergy of AM and M pruning.

The real sinergy: do not exploit M constraints directly to prune the search
space, but use them to prune the data, which in turn induces a much
stronger pruning of the search space.

The real sinergy of AM and M pruning lies in Data Reduction ...

16

ExAnte u-reduction

@ Definition [u-reduction]:

Given a transaction database TDB and a monotone constraint C,,,
we define the u-reduction of TDB as the dataset resulting from
pruning the transactions that do not satisfy C,,.

,UJ[TDB]CM — Th(CM) NTDB

@ Example: C,,= sum(X.price) > 55

fom Tico tID | Itemset | Total price

: N . 1 bedg 58
{) 3 2 a,b,d,e 63
c 14 f bﬁcld!g!h ZE)

. = 3 [o Py =4 D1
d 38 5} c,d,f.g 65
(E 15 6 a,b,c,d,e 7
h | 12 S 49

ExAnte o-reduction

@ Definition [a-reduction]:
Given a transaction database TDB, a transaction <tID,X> and a

frequency constraint C, [TDB], we define the a-reduction <tID,X>
as the subset of items in X that satisfy C,,,[TDB].

al(tID, X)c;, . ,,rpB) = F1NX
Where:
Fi = {I € Items|{I} € Th(Cyreq|TDB])}

We define the a-reduction of TDB as the dataset resulting from the
a-reduction of all transactions in TDB.

9 Example: Items — {a’: b: C: d: 65 f: q} X :_ {a’: C: d: f: Q} o
Th’(cf’f'fiq) — {{a’} {b}: {C}: {a: b}: {a: C}: {b: C}: {a: b: C}}
Fi1 ={a,b,c}
(][<L‘[D?X>]Cj'req — fﬂl m X — {a’? C}

18

ExAnte Properties

THEOREM 1 (pu-REDUCTION CORRECTNESS). (Given a
transaction database T'DEB, a monotone constraint Cpr, and
a frequency constraint Cyreq, we have that:

VX € Th(Cfreq|T'DB]) N Th(Car) :
supprpe(X) = SUPPu[TDB¢,, (X).

PROOF. Since X € Th(Ca), all transactions containing
X will also satisfy Cps for the monotonicity property. In
other words: TDB|X| C u|T'DB|c,,. This implies that:

SUPPTDB(X) = SUpPPu[TDB]¢,, (X)
[]

ExAnte Properties

THEOREM 2 (a-REDUCTION CORRECTNESS). Given a
transaction database 1'DB, a monotone constraint Cyr, and
a frequency constraint Cfreq, we have that:

VX € Th(Ctreq[TDB]) N Th(Car) :
supprpr(X) = SUPPa[T DBy, .. (X).

PROOF. Since X € Th(Cfreq), all subsets of X will be
frequent (by the anti-monotonicity of frequency). Therefore
no subset of X will be a-pruned (in particular, no l-itemsets
in X'). This implies that:

SUP}?TDB(X) — Suppa[TDB]gfrﬂq (X)
[]

20

A Fix-Point Computation

Shorter
transactions

Less frequent
1-itemsets

Less
fransactions
which satisfy ¢,

ntil a fix-poi
is reache

Less
Transactions
in TOB

21

ExAnte Algorithm

Procedure: ExAnte(T'DB,Cps, min_supp)

1.
2.

=

- S UNNC I

10.

12.
13.
14.
15.

I := 0;
forall tuples t in TDB do
if Cps(¢) then forall items i in ¢ do
i.count+-+; if i.count > man_supp then I .= I U i;
old_number_interesting_items := |I[tems|;
while |I| < old_number_interesting_items do
TDB := a[TDB|cy,.,;
TDB := p[TDB|c,,;
old_number_interesting_items := |I|;
I :=0;
forall tuples ¢t in TDB do
forall items ¢ in ¢ do
ir.count + +;
if i.count > min_supp then I := I U i;

end while

22

ExAnte Preprocessing Example

: : tID | Itemset | Total price
item | price 1 bo,d \5& 55
a 5 bl
b o —2 1 ybdse .
. o 3 | bedxk T 5§ (52
4 AeE \31
2 38 5 C.aXX e S
P 6 | Xbcdx IR 52
. ; bt Tty
h 19 8 b,c.d 52
9 ke N—t+
Item Support
X % 3 t T
b 7 X 4 4
c 5 5 5 4
d 7 X 5 4
X M 3 t
X 3 3 t 1
X % 5 3 t
X 2 2 t 1

» Min_sup =4
» C,= sum(X.price) > 45

23

Number of alive transactions

10x10°

8x10°8

6x10°8

4x1068

2x10°8

Experimental Results

Dataset "IBM", Cardinality constraint

2 4 6

Cardinality threshold

- min_supp = 0.1
min_supp = 0.05
min_supp = 0.025

- min_supp = 0.01
e

e
LN
P
e
|
“
N
.
‘H-.
e
.
7
M““?a“
B 4
- O
8

24

!xperlmenta’ !esu’ts

Dataset "IBM", Cardinality constraint | —e— min_supp = 0,05
18000 - min_supp = 0,025

i
0
S

16000

14000 o,

12000

10000

8000

6000

Number of alive 1-itemsets
]

4000

2000

0 T T T T |
0 2 4 6 8 10

Cardinality threshold

Candidate itemsets generated

Experimental Results

Dataset "ltalian™

—&— Aprion
------- - ExAnteApriori sum(prices) > 50k

B6x10° B \.\, —-—%—— ExAnteApriori sum(prices) = 150k
* w) —-=57— ExAnteApriori sum(prices) > 100k
"-.D — l—- ExAnteAprior avg(prices) > 25k
5x106 - L
k =5
. [}
4x10° - * i}
.D‘.
: - 0.
3x10° % D
N So
- E \R (=5
2x10° 1 ¥ v, Q.
L | o
v ¥
! 5
1x10% S .‘!. y “m o
0
0,00 0,02 0,04 0,06 0,08 0,10 0,12

Minimum support (%)

26

60000

50000

10000

Experimental Results

Dataset "ltalian” —®&— Apriori

-k ExAnteApriori Sum > 150k
--%¥-- ExAnteApriorn Avg > 25k

27

