
Data management in Wireless
Sensor Networks (WSN)

Giuseppe Amato

ISTI-CNR
giuseppe.amato@isti.cnr.it

Outline

 Data management in WSN

 Query processing in WSN

 State of the art

 Future research directions

Outline

 Data management in WSN

– WSN applications

– Data models

 Query processing in WSN

 State of the art

 Future research directions

Wireless Sensor Networks (WSN)

 A WSN is composed of a set of nodes that

– Are small as a coin or a credit card

– That communicate through wireless interfaces

– Have a set of transducers to acquire environmental

data

– Have a microprocessor and a memory

– Can run simple software programs

– Are battery powered

Wireless Sensor Networks (WSN)

PC

data

commands
Sensors

Sensor Network Applications

Traditional monitoring
apparatus.

Earthquake monitoring in shake-
test sites.

Vehicle detection: sensors along a
road, collect data about passing
vehicles.

Habitat Monitoring: Storm
petrels on Great Duck Island,
microclimates on James
Reserve.

Some Sensornet Apps
redwood forest

microclimate

monitoring

smart cooling

in data centers

(hp/intel)

http://www.hpl.hp.com/research/dca/smart_cooling/

condition-based

maintenance

(intel/BP)

And More…

• Homeland security

• Container monitoring

• Mobile environmental apps

• Bird tracking

• Zebranet

• Home automation

• Etc!

structural

integrity

(ucb/ggbd)

Peculiarities of WSN applications

 Several applications on WSN produce and process

huge amount of data

– Data are continuously produced

– Data produced by different sensors might need to be

compared/matched

– Behaviour of sensors might need to be adjusted/refined over

time

– Environmental situation can change so new strategies might

need to be used

– Use of gathered data is not always known a priori

Declarative Queries

 Programming WSN Applications is Hard
– Limited power budget

– Lossy, low bandwidth communication

– Require long-lived, zero admin deployments

– Distributed Algorithms

– Limited tools, debugging interfaces

 The database paradigm abstract away much of the
complexity

– Programming complexity is left to database developers

– Users of the database get:

 Safe, optimizable programs expressed in terms of queries

 Freedom to think about apps instead of low-level programming details

 Reprogramming the WSN remotely by sending new queries

Outline

 Data management in WSN

– WSN applications

– Data models

 Query processing in WSN

 State of the art

 Future research directions

Data model in wireless sensor
networks

 Relational model is widely used in traditional databases
– SQL databases are everywhere

 It can also be adopted in WSN databases
– Output of sensors can be seen as infinitely-long logical tables

 data streams

– Columns consists of attributes defined in the network as
 Sensor readings

 Node_id, location, Time_stamps, …

 User defined attributes

– Use:
 A data stream can be associated to every node (a group of transducers)

 A data stream can be associated to every transducer

 Some proposals consider just one single global data stream where all
nodes put values in

Data Streams

 Each data stream consists of relational tuples

 The stream can be modeled as an append-only

relation

 But repetitions are allowed and order is very

important!

Data Streams - timestamps

 Data streams are (basically) ordered according to their
timestamps

 Several constructs are based on timestamps:
– temporal windows

– unions

 Timestamps can be External and Explicit
– Injected by data source

– Models real-world event represented by tuples

– Tuples may be out-of-order, but if near-ordered can reorder with small
buffers

 Internal
– Introduced as special field by Nodes

– Arrival time in system

– Can be explicit (I.e., seen by the queries) or implicit.

Query languages

 Declarative languages derived from SQL:
select nodeId, timestamp, temp, light

from sensors

where light > 10

Sampling interval 1s

 In this example:
– One single global stream “sensors”

– The query returns the nodes, timestamp and
transducer readings where light is greater than 10

Outline

 Data management in WSN

 Query processing in WSN
– From traditional databases to WSN databases

– Data Stream query processing issues

– Query processing/optimisation issues in WSN

 State of the art

 Future research directions

Query processing

 High level query languages are
translated in lower level formalisms

– Relational algebra is the most used
formalism
 Its abstraction level is a good compromise between low

level data access and expressiveness

 It can be used/extended to support query processing in
wireless sensor networks

A relation in Wireless Sensor
Networks (stream)

Timestamp NodeID Light Temp Humidity

13 2 24 22 70

13 3 25 22 70

14 2 25 22 71

14 3 25 23 70

… … … … …

Relational Algebra applied to WSN

 Role of operators in WSN
– Select

 Can be used to filter useful readings and to detect alarms

– Project
 Can be used to reduce size of tuples to cope with small size memory of

nodes and to reduce cost of sending data through the network

– Join
 Can be used to relate data acquired by different nodes and to relate

historical data

– Aggregation
 In-network aggregation can be used to reduce the amount of data to be

transmitted and to abstract over groups of nodes

Select Operation in WSN

pred (S)

 takes

– a stream S

– a predicate pred

 returns a new stream containing rows of S that satisfy

predicate pred

 Suppose pred is used to encode an alarm (for instance

Temperature > 100)

– The selection does not produce tuples until an alarm occurs

(temperature is above 100)

Project Operation in WSN

a1,…,an (S)

 takes

– a stream S

– a set of fields a1,…an of S

 returns a new stream containing columns of S

corresponding to attributes a1,…an

 Memory resources of nodes are limited; sending data

among nodes has an high cost

– Projection can be used to eliminate unwanted fields to be able

to process queries with small size memory and to save energy

when sending data

Natural Join in WSN

S1 S2
 takes

– two streams S1 and S2

 returns a new relation obtained as

– a1,...,am(R.a1=S.a1,…,R.an=S.an(S1xS2))

– where a1,…,an are common attributes of S1 and S2

– a1,…,am is the union of attributes of S1 and S2

– S1xS2 is the Cartesian product of the two streams

 Given that Streams are potentially infinite, Cartesian product is a problem

– The finite set of tuples that participate in the join should be identified

 Join can be used to relate data simultaneously acquired by different
nodes

 Join can be used to relate current events with others that happened in the
past

Aggregate Functions and
Operations in WSN

 An aggregation function takes a set of values and
returns a single value.

avg: average value min: minimum value
max: maximum value sum: sum of values
count: number of values

 In WSN it can be useful to aggregate
– data acquired by different nodes

 E.g. the average temperature measured in a large room

– data acquired at different timestamps
 E.g the average temperature measured during the day

Aggregating data acquired by
different nodes (1)

 Trivial solution: centralized aggregations

– All nodes send acquired data to a node that

computes the aggregation

– It creates a bottleneck

 Computation is done by one single node that can

prematurely consume its energy

– It has high communication cost

 It is difficult to exploit proximity between nodes to save

transmission energy

Aggregating data acquired by
different nodes (2)

 Distributed computation of aggregation

– Many relevant aggregation functions can be

factorized into simpler functions

– Different nodes can simultaneously execute the

simple functions to contribute to the computation of

the overall aggregation

Distributed computation of the average
of data acquired by different nodes

node 1

node 2

node 3

node 4

Light

pavg

Light

pavg

Light

favg

Light

(TS, Light)

(TS, Light)

(TS, Light,#)
(TS, Light)

(TS, Light,#)
(TS, Light)

(TS, Light)

Partial average:

(sum, number of tuples)

Final average:

(sum/number of tuples)

Aggregation of data in a time
window

Timestamp Light

11 24

12 25

13 26

14 27

15 28

16 29

17 30

18 31

19 32

20 33

21 34

22 35

average

average

average

average

Timestamp Light

13 25

16 28

19 31

22 34

… …

Outline

 Data management in WSN

 Query processing in WSN

– From traditional databases to WSN databases

– Data Stream query processing issues

– Query processing/optimisation issues in WSN

 State of the art

 Future research directions

Issues in Data Stream Query
Processing

 Continuous queries

– Given that streams are potentially infinite, queries

may run forever continuosly

 Blocking Operators

– Some operators just work when relations are finite

Blocking Query Operators

 No output at all until entire input seen

 Streams – input never ends: only non-blocking
operators are allowed

 Traditional SQL aggregates are blocking
– Cannot determine the “max” until the entire relation is seen

 Many other SQL operators are have a blocking
implementation in RDBMS

– But they are not intrinsically blocking: group by, join
 Large buffers might be required to store pending records

– Example: in case of join operator, when two records match they can
be delivered, however all records should be kept given that new
additional matching records can come later

Avoiding Blocking Behavior

 Using Windows

– aggregates on a limited size window are

approximate and non-blocking

 Punctuations

– Aggregates until some agreed mark (a portion of a

stream is considered)

 Assertion about future stream contents

– Unblocks operators, reduces state

Relational Query Operators on
Streams

 Selection and project: no problem.
– Record can be processed and possibly delivered as they come

 Ordering: not possible
– The entire relation should be seen before delivering a single

record

 Joins:
– General case problematic on streams

 May need to join arbitrarily far apart stream tuples

– Natural join on stream-ordered attributes is tractable
 but not always usable

– A solution can be to join one stream and a window specified on another
stream(also multiple windows)

Select A.value, B.value

from Source1 A [window T], Source2 B

where A.ID = B.ID

Multi-way Sliding Window Joins

 Evaluation of n-way sliding window joins queries

– n streams with associated sliding windows

– continuously evaluate the joins between all n windows

 Two natural joins strategies for this

– eager: join is evaluated each time a new tuple arrives in any of

the input streams

– lazy: join is evaluated with some pre-specified frequency, e.g.,

every t time units

Aggregation

 Grouping with aggregate operations are

blocking

 Example

select avg(temp), floor

from sensors

group by floor

 (sliding) windows is a widely used solution

Aggregation with Approximation

 When aggregates cannot be computed exactly
in limited storage, approximation may be
possible and acceptable
– Statistics are used to estimate results

 Examples:
– select G, median(A) from S group by G

– select G, count(distinct A) from S group by G
 Can be estimated by using summary structures

– samples, histograms, sketches …

Outline

 Data management in WSN

 Query processing in WSN

– From traditional databases to WSN databases

– Data Stream query processing issues

– Query processing/optimisation issues in WSN

 State of the art

 Future research directions

Basic Steps in Query Processing

Wireless sensor network

Optimization
Relations generated by two equivalent expressions
have the same set of attributes and contain the same
set of tuples, although their attributes may be
ordered differently.

Optimization

 Generation of query-evaluation plans for an expression

involves several steps:

1. Generating logically equivalent expressions

 Use equivalence rules to transform an expression into an

equivalent one.

2. Annotating resultant expressions to get alternative query plans

3. Choosing the cheapest plan based on estimated cost

 The overall process is called cost based

optimization.

Heuristic Optimization in traditional DB

 Cost-based optimization is expensive

 Systems may use heuristics to reduce the number of
choices that must be made in a cost-based fashion.

 Heuristic optimization transforms the query-tree by
using a set of rules that typically (but not in all cases)
improve execution performance:

– Perform selection early (reduces the number of tuples)

– Perform projection early (reduces the number of attributes)

– Perform most restrictive selection and join operations before
other similar operations.

– Some systems use only heuristics, others combine heuristics
with partial cost-based optimization.

Steps in Typical Heuristic
Optimization in traditional DB

 1. Deconstruct conjunctive selections into a sequence of single
selection operations

 2. Move selection operations down the query tree for the
earliest possible execution

 3. Execute first those selection and join operations that will
produce the smallest relations

 4. Replace Cartesian product operations that are followed by a
selection condition by join operations

 5. Deconstruct and move as far down the tree as possible lists
of projection attributes, creating new projections where needed

 6. Identify those subtrees whose operations can be pipelined,
and execute them using pipelining).

Structure of Query Optimizers

 Some query optimizers integrate heuristic selection

and the generation of alternative access plans.

 Even with the use of heuristics, cost-based query

optimization imposes a substantial overhead.

 This expense is usually more than offset by savings

at query-execution time, particularly by reducing the

number of slow disk accesses.

Query execution cost in WSN

 In traditional databases query processing cost is typically
estimated in terms of disc accesses

– Number of record reads, size of temporary results, …

– The optimisation objective is high throughput query execution

 In WSN cost is estimated in terms of energy consumed
– The objective is increasing autonomy of nodes

 Activity that consumes energy is data access
– Data acquisition from a transducer

 (different transducers have different activation costs)

– Accessing data in a remote node
 (during distributed query processing nodes have to exchange data)

– Accessing data stored locally
 (processor and main memory usage)

 The above three cases should be taken into account

Simple query example

select t, l

from T, L

Where T.t_s=L.t_s

t>20 and

l > 10

T

t_s t …

0 10 ..

1 15 …

… … …

L

t_s l …

0 5 ..

1 7 …

… … …

T L

t>20

l>10

T L

t>20 l>10

T L

l>10

t>20

T

L

l>10

t>20

L

T

t>20

l>10

Traditional DB execution

L

T

t>20

l>10

Disk access

Disk access

Power aware query optimisation

 Cost of a query is estimated considering

energy consumption

– Processing data consumes energy

– Sensing data consumes energy

 Different sensors have different energy consumpiton

– Transmitting data consumes energy

– Receiving data consumes energy

Execution on a single node of a WSN

L

T

t>20

l>10

Low energy sensing

Expansive sensing

Data Processing

Data Processing

Data Processing
Cost:

(Cl+Cpr)*n+

P(l>10)*(Cpr+Ct)*n+

P(l>10)*Cpr*n

Execution on two nodes of a WSN

L

T

t>20

l>10

Low energy sensing

Expansive sensing

Data Processing

Data Processing

Data Processing

Cost:(Cl+Cpr)*n+

(Ctx+Ct+

P(l>10)*(Cpr+Crx))*n+

P(l>10)*Cpr*n

Transmit all

Receive what needed

SELECT t, l P(t>20) 0.2 Cost of sensor t: Ct 12 Cost of transmission: Ctx 10

FROM T, L P(l>10) 0.7 Cost of sensor l: Cl 2 Cost for receiving: Crx 6

WHERE T.t_s=L.t_s Cost of processing:Cpr 1

 t>20 AND

 l>10

Ex. Plans Traditional DB Single node Multiple node

2 * n (Ct+Cl+Cpr)*n (Ct+Cl+Cpr+Ctx+Crx)*n

n 3.2 Cpr*n 16 Cpr*n 32.2

 P(t>20)*n P(t>20)*Cpr*n P(t>20)*Cpr*n

2* n (Ct+Cl+Cpr)*n (Ct+Cl+Cpr+Ctx+Crx)*n

n 3.7 Cpr*n 17 Cpr*n 32.7

P(l>10)*n P(l>10)*Cpr*n P(l>10)*Cpr*n

n (Ct+Cpr)*n (Ct+Cpr+P(t>20)*Ctx)*n

P(t>20)*2*n 1.6 P(t>20)*(Cpr+Cl)*n 14 (Crx+P(t>20)*(Cpr+Cl))*n 21.8

P(t>20)*n P(t>20)*Cpr*n P(t>20)*Cpr*n

n (Cl+Cpr)*n (Cl+Cpr)*n

P(l>10)*2*n 3.1 P(l>10)*(Cpr+Ct)*n 13 (Ctx+Ct+P(l>10)*(Cpr+Crx))*n 30.6

P(l>10)*n P(l>10)*Cpr*n P(l>10)*Cpr*n

n (Ct+Cpr)*n (Ct+Cpr+P(t>20)*Ctx)*n

n 2.9 (Cl+Cpr)*n 17 (Cl+Cpr)*n 23.1

(P(t>20)+P(l>19))*n (P(t>20)+P(l>19))*Cpr*n ((P(t>20)+P(l>10))*Cpr+P(l>10)*Crx)*n

R1= T L

R2=t>20(R1)

R3=l>10(R2)

R1= T L

R2=l>10(R1)

R3=t>20(R2)

R1= t>20(T)

R2= R1 L

R3=l>10(R2)

R1= l>10(L)

R2= R1 T

R3=t>20(R2)

R1= t>20(T)

R2= l>10(L)

R3= R1 R2

Aggregation query example

select avg(t),avg(l)

from T, L

where T.t_s=L.t_s

T

t_s t …

0 10 ..

1 15 …

… … …

L

t_s l …

0 5 ..

1 7 …

… … …

T L

gavg(t),avg(l)

T L

gavg(t) gavg(l)

They are

equivalent

just if t_s is

unique!

T L

gavg(t) gavg(l)

Execution on two nodes of a WSN (1)

Low energy sensing

Expansive sensing

Data Processing

Data Processing

Data Processing

Transmit a lot

Receive all

T L

gavg(t) gavg(l)

Execution on two nodes of a WSN (2)

Low energy sensing

Expansive sensing

Data Processing

Data Processing

Data Processing

Transmit a few data

Receive all

Outline

 Data management in WSN

 Query processing in WSN

 State of the art
– Cougar

– Fjord

– TAG

– TinyDB

 Future research directions

Cougar Approach

 Data models:
– stored data (node ID, position, …) relations

– sensor data (acquired from physical environment) sequences

 Sensors model:
– a sensor Abstract Data Types (ADT) is defined for all sensors of

a same type;

– a physical sensor is an instance of an ADT;

– public interface consists of signal processing functions.

– For instance an ADT may contain a function

 getTemp() which when invoked returns current temperature

 detectTempAlarm(threshold) which when invoked returns
temperature when above the threshold

Cougar Approach (2)

 Three layers
– Sensor layer

 ADT

– When a function returns a result it sends it to the above layer and
then it is re-invoked

– Leader layer

 Special nodes that coordinate activity of group of nodes

– For instance the aggregate operations

– Front-end

 Data acquired by nodes is processed on a PC

 It is possible to relate data acquired by different nodes

 However, no temporal aggregates are possible

Fjord Approach (1)

 Centralized architecture

 Two advantages:

– supporting the combination of data stream and disk-saved data;

– defining power-sensitive operators (sensor proxies) as mediator

between sensors and query processor.

 Architecture:

Fjord Approach (2)

 Other sensor proxy functions:

– adjusting the sampling and

delivering rate of sensors

depending on user demand;

– asking sensors to transmit

only data required by users;

– asking sensor for

aggregation.

Fjord Approach (3)

 Important result:

– Using only one Fjord for all similar queries over a

sensor consumes less energy than allocating a

separated Fjord for each new query.

 Reasons:

– no overhead due to context switch between threads;

– sensor tuples are put in the buffer pool of the only

one Fjord.

TAG Approach (1)

 A distributed (spatial) aggregation service for ad hoc networks of
TinyDB Motes

– Sensors acquire data once per epoch

– TAG aggregate data produced by different sensors in the same epoch

– Example: average temperature in the first floor

 Steps:
– users pose aggregation queries from a powered base station;

– each query is routed to all nodes of network;
 During the query diffusion a routing tree is built

– each node delivers results back to the user through a routing tree
rooted at the base station;

– as data flows up the tree, each node combines received data and
locally produced ones.

TAG Approach (2)

 Building of the routing tree:
– the base station broadcasts a message into the network;

– when any node receives this message, it chooses the sender
as its parent and rebroadcasts the message;

– the tree building ends when all nodes have set their level.

 When a node has a data to send to the root, it delivers
it to its parent, and so on until the message reaches
the root

 Routing messages are transmitted periodically in order
to adapt the routing tree to topology changes

TAG Approach (3)

 Query execution (two-phase
process):

– query is sent to all nodes
down into the tree;

– aggregate values are routed
up from children to parents.

 Advantages:

– reducing communication

– tolerating disconnections;

– idle intervals for processor
and radio are easily
identified.

Tag Approach (4)

TinyDB Approach (1)

 Architecture for distributed execution of queries in networks of
Mica motes

 Extends the TAG approach

– Not limited to data aggregation

– Optimize the data acquisition process from transducers

 A Query is received by the base station that

– parses it,

– optimizes it

– send to the network

 A query is global: it is (possibly) processed by all nodes

– Restrictions on static attributes may limit the nodes that actually
process the query

TinyDB Approach (2)

 Example:
select light, temperature

from sensors

where light>20

– All nodes return light and temperature when light >20

select light, temperature

from sensors

where x>20, y>100

– Nodes with specified coordinates return light and temperature

TinyDB Approach (3)

 Queries process a single table “sensors”

 Table “Sensors” is logically populated adding new tuples every epoch
– In every epoch each node add a tuple in the table: each row corresponds

to a node reading in an epoch

– The number of row generated in an epoch is equal to the number of
nodes

 “Sensors” has a column for each type of physical sensor

 Table sensor non-materialized: it is logically distributed across nodes
of the entire network

– Every node owns records corresponding to data that it produces

– A query is executed in parallel in all nodes. The query execution in a
node just process the records produced by that node

 A query is processed repetitively every epoch

TinyDB Approach (4)

 Query execution steps:
– users submit queries to a base station where they are parsed

and optimized;

– data is acquired only when it is required by a predicate;

– sampling operations are executed in increasing energy order;

– queries are sent only to those nodes with relevant data;

– a semantic routing tree (SRT) is built (only for static attributes);

– nodes are synchronized and sleep for most of each epoch;

– acquired data is filtered and routed to operators;

– the result is put into a queue with data from children, waiting
for delivery to the parent.

TinyDB Approach (5)

Query processing model:

TinyDB Approach (6)

Semantic

Routing Tree (SRT):

SRT is also used as an

“index” to decide

where a query should

be sent, by using static

attributes (x, in this

example)

TinyDB Approach (7)

 Acquisitional query processing:

– Granularity for query optimization is the field rather

than the record

 In traditional databases query optimization consider

number of records (or block of data)

 In sensors “generating” a value for a record has a cost

– A transducer is activated just if needed

 Some field in the “sensor” table might be empty just

because they are not needed

TinyDB Approach (8)

 Example:

select light, mag

from sensors

where light > 20

and mag > 70

 No need to acquire temp, accel, etc.

 Heuristic: acquisitions are ordered by increasing cost
– First light is acquired. If condition (light > 20) is true then also mag is

acquired

– In several cases mag acquisition is not performed

– This is an heuristic: it does not work in all cases

TinyDB Approach (9)

 Limitations:
– Optimization made on global considerations

 It is not possible to generate a query specially optimized for a
specific node

– It is not possible to relate data generated by different nodes
(sensor table is distributed)

 Example: is the temperature of room 1 greater than that of
room2?

– It is not possible to compute temporal aggregates (a query is
processed once per epoch)

 Example: give me the average temperature measured every
minute during last 10 minutes

MaDWiSe approach

 Existing approaches do not distinguish among

data acquisition, data transfer, data processing

phases

 Our approach -> layered architecture:

– Network layer

– Stream system

– Stream query processing

 All nodes of the WSN have these layers

MaD-WiSe architecture

commands

WSN

3

1

5

0
2

8

4

6

PC Sensor node

9

Query Parser

Query
optimizer

G
U

I

MaD-WiSe

Query Processor

M
a

D
-W

iS
e

Stream Syst.

Network

Tiny OS (Op. Syst.)

Query Examples

SELECT *

FROM 5.Temperature

WHERE 5.Temperature>35

EVERY 20 SECONDS

SELECT Accel

FROM avg(5.Accel, 4.Accel)

EVERY 50 MSECONDS

SELECT avg(3.Audio)

FROM 3.Audio

EPOCH 100 SAMPLES

EVERY 10 MSECONDS

MaDWiSe-Network layer (1)

 Localization and Routing:

– Virtual Coordinate assignment protocol (VCap):

 Large sensor networks, not equipped with localization devices

such as GPS

 Distributed protocol which defines a coordinate systems unrelated

to the sensor location

 VCap selects three anchors in the network boundary and assigns

to each node a triplet of coordinates which represents the hop

distance of the node from the three anchor nodes

 The coordinate system can efficiently support greedy geographic

routing

MaDWiSe -Network layer (2)

 Energy-efficient, application-driven communication:
– Many applications use channels at fixed data rate

 E.g.: directed-diffusion paradigm or data-base oriented
applications

– Connection-oriented communication protocol

– Estimation of the next packet arrival time and turn on/off the
radio accordingly

 Minimization of the packet losses due to radio off

 Minimization of energy consumption

– Sensors not involved in the communication channels turn off
the radio

MaDWiSe - Stream system (1)

 Wireless sensor network mainly produce and process streams of
data

 Tree types of data sources

– Transducers -> Sensor streams

– Local applications -> Local streams

– Network -> Remote streams

 Stream system: the equivalent of the “file system” for WSN
applications

– open, close, read, write like operations on various type of streams

– Streams are n -> 1 (n can write, 1 can read)

 This limit is easily manageable

MaD-WiSe: Stream system (2)

 Algebra operators read and produce data streams

 Three types of data streams in MadWise
– Sensor streams

 Connect transducers with operators

 Sampling:

– Periodic (“every x milliseconds”)

– On Demand (“when needed”)

 Cost depends on the type of transducer
– Remote streams

 Connect query operators on different nodes

 Radio communication is needed

 Cost depends on length of paths between nodes

– Local streams

 Connect query operators on the same node

 in RAM

 Negligible cost

T

o1

o2

o1

o2

o1

Mad-Wise: Distributed query
processing

SELECT roomA.Temperature

FROM roomA, roomB

WHERE roomA.Temperature >

roomB.Temperature

and roomA.Temperature > 50

EVERY 20 SECONDS

MaD-WiSe: algebra operators

 “Temp. Join”: joins tuples with same timestamp

– Two implementations

 Continuous join

 Sync join

Output
stream

Right

input stream

Left
input stream

Output

stream

On-demand

sensor

stream

Left

input stream

Data
request

data

Optimisation heuristics

 In addition to various typical optimisation heuristics it

is very relevant to:

1. Use sync-join and on-demand streams when possible

 To reduce acquisition cost

2. Put unary operators on the node where data is acquired

 To reduce communication cost

3. Use left-deep-join-trees

 to increase chances of applicability of 1

Query optimisation example

SELECT *

FROM 1.Magnetism, 2.Acceleration,
3.Temperature

WHERE p1(1.Magnetism)

and p2(2.Acceleration)

and p3(3.Temperature)

EVERY 1000

where we suppose that

Pr(p1)=0.01, Pr(p2)=0.05, Pr(p3)=0.1

and

C(Magn.) = 0.27, C(Accel.)= 0.03, C(Temp) = 0.00009 mJ

Left deep join tree Push down and placement Sync-join

Ordering of operators

 Given a query execution plan structure, new

query execution plans can be obtained

reordering operators

 Possible strategies:

– Selectivity based ordering

– Cost of acquisition based ordering

– Cost of transmission (topology) based ordering

Selectivity ordering Acquisition cost Topology

However: different results might be obtained with

•different selectivity statistics,

•different acquisition costs,

•and different transmission costs

Outline

 Data management in WSN

 Query processing in WSN

 State of the art

 Future research directions

Future research directions

 Increasing query language expressivity

 Identifying significant abstraction levels in the

architecture design

 Using distributed storage when needed

 Sharing portions of query plans

 Similarity matching functionalities

