Corso di Reti Mobili - a.a. 2005/2006

Corso di Reti Mobili

Reti Ad Hoc e Reti di Sensori

Paolo Santi

Istituto di Informatica e Telematica del CNR, Pisa, ITALY

paolo.santi@iit.cnr.it

Corso di Reti Mobili - a.a. 2005/2006

Topology Control

in Wireless Ad Hoc and Sensor Networks

Summary of TC

- Introduction
 - Motivation: the need for Topology Control (TC) in ad hoc and sensor networks
 - A network model: radio signal propagation, energy consumption, and interference
 - An informal definition of TC
 - Topology Control: a taxonomy
 - TC in the protocol stack
- The Critical Transmitting Range for connectivity
- Topology Optimization Problems:
 - the Range Assignment Problem
 - Energy efficient topologies for unicast/broadcast

Summary of TC (2)

- Distributed Topology control
 - "Ideal" properties of a distributed TC protocol
 - Examples of distributed TC protocols: location-based, directionbased, neighborhood based
- Dealing with node mobility

• Towards and implementation of TC: level-based TC

Motivations for topology control

- Energy and capacity are limited resources in ad hoc/sensor networks
- In case of sensor networks, energy consumption is especially critical
- The network designer should strive for reducing node energy consumption and providing sufficient network capacity
- *The answer*: Topology Control (TC) maintain a topology with certain properties (e.g., connectivity) while *reducing* energy consumption and/or *increasing* network capacity

TC and energy consumption

- Wireless channel model: (no interference)
 - P_i : power used by node *i* to send the message
 - $P_{r,i}$: intensity of the received signal at node *j*
 - Node *j* can correctly receive the message sent by *i* if

$$\mathbf{P}_{r,j} \geq \beta$$
,

where β is a threshold value which depends on the requested communication quality

- $P_{r,i}$ is determined by the path loss between nodes *i* and *j*

 $P_{r,j} = P_i / PL(i,j)$

Typical assumption:

 $PL(i,j) \propto \operatorname{dist}(i,j)^{\alpha}$,

where α is in the range [2,6] (depending on environmental conditions)

TC and energy consumption (2)

A wants to send a packet to B

For energy efficiency, is it better to use the long link AB, or two shorter links AC-CB?

 P_{XY} = min power needed to send a packet from X to Y

One long link: $P_{AB} = dist(A,B)^{\alpha}$ Two short links: $P_{AC} + P_{CB} = dist(A,C)^{\alpha} + dist(C,B)^{\alpha}$ Example ($\alpha = 2$): dist(A,B)² = dist (A,C)² + dist(C,B)² - cos (ACB)

Conclusion: two short links are preferable whenever C is in the dashed circle

TC and network capacity

• Protocol Interference model:

- Assumption: all the nodes use the same transmit power
- A packet sent by node *i* is correctly received by node *j* (within range) if and only if

$dist(j,w) \ge (1+\Delta) dist(i,j)$,

for any other node *w* that is transmitting simultaneously, where Δ is a constant that depends on the features of the radio

Topology Control: 4/76

TC and network capacity (2)

A wants to send a packet to C

For network capacity, is it better to use the long link AC, or two shorter links AB-BC?

Compare the size of the Interference Regions

One long link: $\pi \operatorname{dist}(A,C)^2 (1+\Delta)^2$

Two short links: $\pi \operatorname{dist}(A,B)^2 (1+\Delta)^2 + \pi \operatorname{dist}(B,C)^2 (1+\Delta)^2$,

where dist(A,C) = dist(A,B) + dist(B,C)

Conclusion: (by Holder inequality) two short links are preferable

Topology Control: 5/76

Topology control: an informal definition

Topology control:

the art of coordinating nodes' decisions regarding their transmitting ranges, in order to generate a network with the desired properties

Other forms of "topology control":

- *Clustering techniques*: a way of "organizing" the network topology

Differences between TC and clustering:

- In clustering, nodes do not change the transmit power; instead, nodes are assigned with different roles in the network
- In TC, nodes change their transmit power dynamically; all the nodes have the same role

Topology control: a taxonomy

TC in the protocol stack

- Where should TC be positioned in the protocol stack?
- No clear answer in the literature

One possible solution:

TC and Routing

One possible view:

TC and MAC

One possible view:

TC and MAC (2)

Using different transmit powers can:

Introduce additional opportunities for collisions in some cases (BAD)

as well as

Reduce interference (i.e., increase network capacity) in other cases (GOOD)

Corso di Reti Mobili - a.a. 2005/2006

TC and MAC: Example

Hp:802.11 MAC with RTS/CTS exchange

A wants to send a packet to B, and C wants to send a packet to D

No transmit power control:

all the nodes have the same range r, with $r > d_2 + \max \{d_1, d_3\}$

A and C are within each other transmit range: the first that accesses the channel transmits, the other must wait

TC and MAC: Example(2)

Hp:802.11 MAC with RTS/CTS exchange

A wants to send a packet to B, and C wants to send a packet to D

Bad tx power control:

A and B have tx range r_1 with $d_1 < r_1 < d_2$

C and D have tx range r_2 with $r_2 > d_2$

C cannot hear RTS/CTS exchange between A and B; C starts its own transmission, causing a collision at node B

TC and MAC: Example(3)

Hp:802.11 MAC with RTS/CTS exchange A wants to send a packet

to B, and C wants to send a packet to D

Good tx power control:

A and B have tx range r_1 with $d_1 < r_1 < d_2$

C and D have tx range r_3 with $d_3 < r_3 < d_2$

Transmissions $A \rightarrow B$ and $C \rightarrow D$ can occur simultaneously without interference; network capacity is doubled!

Corso di Reti Mobili - a.a. 2005/2006

Corso Reti Mobili

The Critical Transmitting Range

Topology Control: 15/76

The Critical Transmitting Range (CTR)

Assumption: all the nodes have the same transmitting range *r*

The CTR problem:

Assume *n* nodes are placed in a given region *R*; what is the minimum value of *r* such that the resulting network is (strongly) connected?

• This minimum value of *r* is called the *critical transmitting range* for connectivity

CTR: motivations

- Why studying the CTR problem is important?
 - In many situations, dynamically adjusting the node transmitting range is not feasible – for instance, because the wireless transceiver does not allow the transmit power to be adjusted
- Characterizing the CTR helps the network designer to answer fundamental questions, such as:
 - Given *n*, which is the minimum value of the transmitting range that ensures connectivity?
 - Given a transmitter technology (i.e., *r*), how many nodes must be distributed in order to obtain a connected network?

The longest MST edge

• Solving the CTR problem is easy if node positions are know: the CTR is the longest edge of the Euclidean MST built on the nodes

CTR: probabilistic approaches

- In many realistic scenarios, node positions *are not* known in advance (for instance, sensors spread from a moving vehicle)
- *Probabilistic approaches*: nodes are distributed in *R* according to some distribution; which is the value of *r* which guarantees connectivity with high probability (w.h.p.)?

Remark: In this context, w.h.p. means that the probability of connectivity converges to 1 as *n* grows to infinity

Geometric Random Graphs

• **GRG:** a set of *n* points are distributed in a *d*-dimensional region *R* according to some distribution, and some property of the resulting node placement is investigated

Example:

- length of the longest nearest neighbor link
- length of the longest MST edge (CTR)
- total cost of the MST
- These results have been used to prove the following result:
 - If nodes are distributed uniformly at random in [0,1]², the CTR for connectivity w.h.p. is $r = \sqrt{\frac{\log n}{n}}$

Critical ranges

• The following result holds for one-dimensional networks (line):

 $r = \log n / n$

• The following result holds for three-dimensional networks (cube):

$$r = \sqrt[3]{\frac{\log n - \log \log n}{\pi n} + \frac{3}{2} \cdot \frac{1.41 + g(n)}{\pi n}}$$

where g(n) is an arbitrary function which grows to infinity with n

CTR: more practical results

• Besides analytical characterization, the CTR for connectivity has been estimated through simulation

n	CTR
10	0,6566
25	0,4415
50	0,3258
75	0,2720
100	0,2353
250	0,1533
500	0,1082
750	0,0894
1000	0,0765

Table 1.

Values of the CTR when *n* nodes are distributed uniformly in $R = [0,1]^2$. Here, the CTR is defined as the minimum transmitting range that generates at least 99% of connected graphs

The COMPOW protocol

- COMPOW is a distributed protocol that attempts to determine the CTR for connectivity
- Nodes can transmit using a predefined number of power levels (6)
- All the nodes use the same power levels
- Nodes maintain a routing table for each power level, and set as the common transmit power the minimum level such that the corresponding routing table contains all the nodes in the network

Corso di Reti Mobili - a.a. 2005/2006

The COMPOW protocol (2)

- Setting the power to this minimum level achieves the three goals of:
 - maximizing network capacity,
 - reducing contention to access the wireless link
 - extending network lifetime

with respect to the case of no TC

- Drawbacks of the COMPOW protocol:
 - Considerable message overhead
 - Requires global knowledge (routing table)

The giant component

- Suppose all the nodes set their transmit power to 0, and start increasing their power simultaneously
- W.h.p., connectivity occurs when the last isolated node disappears from the graph
- In other words, a *giant component* is formed soon, and the remaining increase in the transmit power is needed to connect few isolated nodes
- Thus, a lot of power is used to connect relatively few nodes
- Giant component phenomenon supported by experimental data:
 - reducing the transmitting range of about 40% with respect to CTR yields a graph in which 90% of the nodes are connected

The giant component (2)

Size of the largest connected component in the communication graph vs. transmitting range (1= CTR). The network is composed by n = 128 nodes

Corso di Reti Mobili - a.a. 2005/2006

Corso Reti Mobili

The Range Assignment Problem

Topology Control: 27/76

The communication graph

Range assignment *RA*: function that assigns a transmit range *RA(u)* to each node *u* in the network

• Given node positions and a range assignment *RA*, the *communication graph* contains a directed edge (u,v) if and only if v is within u's transmitting range, i.e. $RA(u) \ge dist(u,v)$

• A range assignment is said to be *connecting* if it generates a strongly connected communication graph

Corso di Reti Mobili - a.a. 2005/2006

The symmetric communication graph

• Often, we are only interested in bi-directional (symmetric) links

• The *symmetric communication graph* is obtained from the communication graph by deleting unidirectional wireless links

Topology Control: 29/76

An example (Disk Graph)

The Range Assignment problem

- In the CTR problem, all the nodes have the same transmitting range. What happens in the more general case in which nodes may have different ranges?
- First observation: *unidirectional* links may occur

The RA problem:

Consider a set of *n* points in a *d*-dimensional region *R*, denoting the node positions. Determine a connecting range assignment *RA* of minimum energy cost, i.e. such that $\sum_{u} (RA(u))^{\alpha}$ is minimum

The Range Assignment problem (2)

connect v to w and w to v

But in general?

The Range Assignment problem (3)

The RA problem can be solved in polynomial time if
 d = 1 (nodes along a line), while it is NP-hard if d = 2,3

 However, a 2-approximation of the optimal range assignment can be calculated in polynomial time using the MST

The symmetric RA problem

- The implementation of unidirectional wireless links is "expensive"
- Are unidirectional links really useful?
 - Recent experimental as well as theoretical results seem to say: no
- Having a connected backbone of *symmetric* links would ease the integration of TC with existing protocols

The WSRA problem

The WSRA problem:

Consider a set of *n* points in a *d*-dimensional region *R*, denoting the node positions, and let G_S be the symmetric subgraph of the communication graph. Determine a range assignment *RA* such that G_S is connected and the energy cost is minimum

- Solving the WSRA problem remains NP-hard for two and threedimensional networks
- It has been proven that the additional energy cost necessary to obtain a connected backbone of symmetric edges in the communication graph is asymptotically negligible

Energy-efficient communication

- Another branch of research focused on computing topologies which have energy-efficient paths between source-destination pairs
- Given a connected communication graph *G*, the problem is to determine a certain subgraph *G*' of *G* (the routing graph) which can be used for routing messages between nodes in an energy-efficient way
- Why use the routing graph **G**' instead of **G**?
 - Because *G*' is *sparse*, thus the task of finding routes between nodes is much easier and generates less overhead than in the original graph

Power spanners

- Let G be the communication graph obtained when all the nodes transmit at maximum power r_{max}, and assume G is connected. Label every edge (u,v) in G with the minimum power needed to send a message between u and v. Given any path P in G, the power cost of P is the sum of all the weights along the path. The minimum-power path between u and v in G is the path of minimum power cost among all the paths that connect u and v
- Let *G*' an arbitrary subgraph of *G*. The *power stretch factor* of *G*' with respect to *G* is the maximum over all possible node pairs of the ratio between the minimum-power path in *G*' and in *G*
- In words, the power stretch factor is a measure of the increase in the energy cost due to the fact that we communicate using the routing graph G' instead of G

Power spanners (2)

- Ideal features of a routing graph:
 - Low power stretch factor (i.e., *G*' should be a *power spanner* of *G*)
 - Linear number of edges (i.e., *G*' should be sparse)
 - Bounded node degree
 - Easily computable in a distributed and localized fashion

RNG, GG, and other routing graphs

- The routing graphs introduced in the literature are variations of graphs known in the computational geometry community (*distance spanners*)
- Example of power spanners: the Relative Neighborhood Graph (RNG) and the Gabriel Graph (GG)

RNG, GG, and other routing graphs (2)

- Other routing graphs considered in the literature are the Restricted Delaunay Graph and the Yao Graph
- The table below summarizes the power stretch factor and maximum node degree of these routing graphs, assuming $\alpha = 2$

	Power	Degree
RNG	<i>n</i> - 1	<i>n</i> - 1
GG	1	<i>n</i> - 1
RDG	≈25.84	Θ(n)
YG	≈4.05	<i>n</i> - 1

Remark 1: the Gabriel Graph has optimal power stretch factor

Remark 2: all the routing graphs above are sparse (i.e., constant *average* node degree), but have *maximum* node degree linear in *n*

Energy-efficient broadcast

- Other problem considered in the literature: determination of energyefficient *broadcast graphs*
- Similarly to the case of unicast, the concept of *broadcast stretch factor* of a subgraph *G*' of *G* can be defined
- Also in this case, the goal is to find sparse broadcast spanners that can be computed in a distributed and localized fashion
- Unfortunately, this task is more difficult than in the case of unicast

Energy-efficient broadcast (2)

- Finding the energy-optimal broadcast tree rooted at an arbitrary node u of G is NP-hard
- [Wieselthier et al.00]: the authors introduce three greedy heuristics for the minimum-power broadcast problem, based on the construction of the MST
- It has been proven that the broadcast stretch factor of the MST is c, for some 6 ≤ c ≤ 12
- Unfortunately, the MST cannot be computed using only local information

Corso di Reti Mobili - a.a. 2005/2006

Corso Reti Mobili

Distributed Topology Control

Topology Control: 43/76

Distributed Topology Control

- Previous Section: emphasis on finding a subgraph *G*' of the communication graph with "good" properties (for unicast/broadcast communications).
- Implicit in the previous approach: nodes adjust their transmit power on a perpacket basis (e.g., transmitting a message along an energy-efficient path in *G*')
- Other research focused on trying to adjust the *maximum* nodes' transmitting range, in such a way that the communication graph remains connected.

the topology of the communication graph itself is changed

- Implicit in this approach: nodes set the maximum transmitting range periodically, and use the same (maximum) transmit power to send the messages.
- We call this approach **periodical topology control**

Distributed TC: desired properties

- Ideally, a TC protocol should:
 - Generate a *connected* communication graph of *low energy cost*
 - Generate a communication graph with small *physical* degree
 - Be fully distributed, asynchronous, and localized (esp. in case of mobility)
 - Rely on "low quality" information
 - Generate a connected topology free of unidirectional links

TC protocols: information quality

- Direct relationship between *information quality* and *energy consumption*: the more accurate is the information used by the protocol (e.g., location information), the more energy savings can in principle be achieved
- However, information quality (and, thus, the energy savings) must be carefully traded off with the *cost* incurred for making the information available to the nodes. With cost, we mean here either additional HW required on the nodes (e.g., GPS receiver), or message overhead, or both

Physical vs. logical node degree

- Major advantage of topology control: reduce interferences, thus increasing network capacity
- node degree = "measure" of expected interference (*low is good*)
- So far, emphasis on reducing the *logical* node degree (number of edges in the final communication graph), and not on reducing the *physical* node degree (number of nodes in the transmitting range)
- It is the physical node degree, not the logical, which determines the expected interference

Physical vs. logical node degree (2)

Logical degree = 5 Physical degree = 10

Example of communication graph produced by the CBTC protocol

Distributed TC protocols

- We classify distributed TC protocols depending on the type of information used by the nodes to compute the topology
 - Location-based (High quality information):
 a node knows its own location, and the location of the neighbors
 - Direction-based (Medium quality information):
 - a node knows the relative direction and distance to its neighbors
 - Neighbor-based (Low quality information):
 - a node knows the IDs of its neighbors, and can order them according to some measure (e.g., distance, link quality, and so on)

A location-based TC protocol

- LMST (Localized MST):
 - The MST topology has several desirable properties:
 - It is the sparsest possible connected topology
 - It approximates within a constant factor the optimal RA and the optimal broadcast tree
 - Drawback of the MST: its computation requires global knowledge, which is highly inefficient in ad hoc networks
 - Goal of LMST: building an approximation of the MST using only local information
 - Protocol (sketch):
 - every node computes a local MST on its visible neighborhood (all the nodes within maximum transmitting range)
 - these local MSTs rooted at each node are composed into a unique topology, which approximates the network-wide MST

A direction-based TC protocol

• The Cone Based Topology Control (CBTC) protocol is based on the following idea:

a node *u* transmits with the minimum power $p_{u,\rho}$ such that there is at least one neighbor in every cone of angle ρ centered at *u*

Properties of the CBTC protocol

• The CBTC protocol produces a connected communication graph if $\rho \le 2\pi/3$

• The obtained communication graph is made symmetric by adding the reverse edge to every unidirectional link

• A set of optimizations are also proposed, that prune energyinefficient edges while not impairing connectivity and symmetry

A neighbor-based TC protocol

- The goal of the KNeigh protocol is to connect every node in the network to its *k* closest neighbors, where *k* is a properly chosen constant
- The produced graph is made symmetric by adding reverse edges to all the unidirectional links

Properties of the KNeigh protocol

If *n* network nodes are distributed uniformly at random in a square region, then setting k = log *n* is a necessary and sufficient condition (asymptotically) for obtaining a connected graph with high probability

On the average, it is 20% more energy-efficient than CBTC (based on simulations)

Sample topologies

Homogeneous

Sample topologies generated in case of CTR topology control (left), and after KNeigh (center) and CBTC (right) execution. The number of nodes is n = 100

Topology Control: 55/76

Corso di Reti Mobili - a.a. 2005/2006

Corso Reti Mobili

Node Mobility

Topology Control: 56/76

Mobile networks

- Which is the impact of mobility on TC?
 - Increased message overhead: contrary to the stationary case, the protocol must be re-executed periodically in response to node mobility

the "message efficiency" of the protocol is fundamental: protocols that exchange few messages to maintain the topology are needed

Distributed TC and mobility

- Overhead depends on the frequency with which the reconfiguration procedure is executed, which in turn depends on:
 - The mobility pattern
 - The properties of the topology generated by the protocol
- Example: MST-based vs. *k*-neighbor based TC
 - The message overhead needed to build the MST is much larger than that needed to build the *k*-neighbors graph
 - Given the same mobility pattern, the MST should be reconfigured much more frequently than the *k*-neighbors graph

k-neighbor based TC is more resilient to mobility than MST-based TC

Corso di Reti Mobili - a.a. 2005/2006

MST vs KNeigh

Topology Control: 59/76

Mobile TC protocols

• In order to be resilient to mobility, a TC protocol should be based on local information only

- Many protocols presented in the literature enjoy this property, but only some of them have been adapted to explicitly deal with node mobility
 - e.g., the authors of CBTC present a reconfiguration protocol that deals with node mobility

Corso di Reti Mobili - a.a. 2005/2006

Corso Reti Mobili

Level-based Topology Control

Topology Control: 61/76

Towards an implementation of TC

- To end this tutorial, we present two protocols (CLUSTERPOW and KNeighLev) that explicitly take into account a feature of current wireless transceivers: the transmit power can be set only to relatively few (5-6) levels
- For instance:
 - The CISCO Aironet 350 802.11 wireless card has the following transmit power levels: 1mW, 5mW, 20mW, 30mW, 50mW, 100mW
 - The transceiver of the Rockwell's Wins sensor node has the following transmit power levels: 0.12mW, 0.30mW, 0.96mW, 2.51mW, 3.47mW, 13.8mW, 19.1mW, 36.3mW

The CLUSTERPOW protocol

- The protocol is an extension of the COMPOW protocol
- The goal of the CLUSTERPOW is to overcome a problem of COMPOW: when the node distribution is not "uniform", the protocol performs very poorly

COMPOW inefficiency:

all the nodes have the same tx range, which must be at least equal to *d*

The CLUSTERPOW protocol (2)

- Basic idea of CLUSTERPOW: every node *u* in the network maintains one routing table for each power level
- The routing table for level *i*, RT_i, is updated by a routing daemon (one for each level), and contains all the nodes that are reachable by *u* using power at most *i*
- This way, CLUSTERPOW induces a node clustering: for every node *u*, several clusters are defined, with the cluster at level *i* formed by the nodes in *RT_i*
- When *u* needs to send a message to *v*, it sends the message with power level *j*, where *j* is the minimum level such that $v \in RT_i$
- Intermediate nodes relay the message according to the same rule, until v is reached

Corso di Reti Mobili - a.a. 2005/2006

The CLUSTERPOW protocol (3)

CLUSTERPOW implementation

- CLUSTERPOW has been implemented in the 2.4.18 Linux kernel, on laptops using CISCO Aironet 350 cards
- Several routing daemons (one for each power level) are started on preassigned ports
- From the routing tables at all the power levels, the composition of the kernel routing table is done by the CLUSTERPOW agent running in user space
- The efficacy of CLUSTERPOW has been tested on the field, using 5 laptops
- Source code is available at *http://www.uiuc.edu/~kawadia/txpower.html*

Technological problems

- The authors of CLUSTERPOW experienced several problems in its implementation
- The firmware of the CISCO cards forces a card reset every time the transmit power is changed. Then:
 - The power change latency is very large (about 100ms)
 - Changing the transmit power consumes a lot of energy
- Furthermore, frequent power changes are very likely to crash the wireless card
- As a consequence, any experimentation of CLUSTERPOW with a significant amount of traffic was impossible
- Is per-packet topology control feasible? With current technology, NO

A CLUSTERPOW inefficiency

Remark: the energy-efficiency of CLUSTERPOW can be improved. For instance, node u might have reached n_1 using two shorter hops, with an overall power consumption of 11mW, instead of 100mW

Infinite loop

• If not implemented carefully, the optimization described in the previous slide can lead to packets getting into infinite loops!

Tunneled CLUSTERPOW

• To avoid this, the packet is "tunneled" to its next hop using lower power levels, instead of sending the packet directly

- The implementation of T-CLUSTERPOW is very difficult: a dynamic perpacket tunneling mechanism would be needed, which is not available and hardly implementable
- Other problem: when the path between source and destination is long, the packet header becomes very large

The KNeighLev protocol

- KNeighLev is a level-based implementation of k-neighbors topology control
- The basic idea is the following:
 - Every node starts transmitting at minimum power
 - After a certain stabilization period, the node checks its symmetric neighbors count (which can be easily derived from the set of detected incoming neighbors and its own power level)
 - If the symmetric neighbors count is below k, the node increases its power level, and sends a help message to inform its outgoing neighbors that it needs more symmetric neighbors
 - This process is repeated until the node has at least k symmetric neighbors, or the maximum transmit power is reached

The KNeighLev protocol (2)

- The authors of KNeighLev show through simulation that *k* = 4 guarantees the formation of a communication graph which is connected w.h.p., for values of *n* in the range 100 500
- They also present a set of optimizations, which remove energyefficient links without impairing connectivity and symmetry
- Through simulation, it is shown that KNeighLev maintains its relative advantage in terms of energy efficiency (around 20%) with respect to the level-based version of CBTC, in which $p_{u,\rho}$ is rounded to the next higher power level

Optimizing the power levels

- The power levels used in the simulation of KNeighLev are those typical of the CISCO Aironet 350 card
- This choice of the power levels is not necessarily optimal (see table below)

level	CISCO	Optimized
0	0.18	1
1	0.94	4
2	3.69	7
3	5.58	10
4	9.3	13
5	18.5	18.5

Table 3. Expected number of neighbors (under the assumption of uniform node distribution, with n=100) at the different transmit power levels, in case of CISCO power levels, and after optimization

Optimizing the power levels (2)

Empirical distribution of the node power levels using the CISCO and optimized power levels

- Using the optimized power levels, the energy-efficiency of the topology generated by KNeighLev is improved of about 10% (with respect to the case of CISCO power levels)
- Accurately choosing the power levels is very important, since it can provide further power savings at virtually no cost

CLUSTERPOW vs. KNeighLev

- CLUSTERPOW performs per-packet TC (hardly achievable with current technology)
- KNeighLev performs periodical TC: once the transmit power level is set, all the packets are sent using the same power. This approach is more coherent with the current transceiver technology
- What about the energy savings achieved by the two protocols? Let us return to the previous example....

CLUSTERPOW vs. KNeighLev (2)

• Assuming that the power levels of u, n_0, n_1 , and n_2 after KNeighLev execution are 1mW, 10mW, 100mW, and 100mw, respectively, we have that the overall power consumption of communicating a packet from u to v is 211mW for both protocols

• However, examples can be easily found in which CLUSTERPOW is more efficient than KNeighLev, or in which the contrary holds

• Intuitively, KNeighLev is more efficient in the uplink (from *u* to n_1), while CLUSTERPOW is more efficient in the downlink (from n_1 to v)

Conclusion

 In conclusion: the relative energy-efficiency of CLUSTERPOW and KNeighLev depends on several factors, such as node distribution and data traffic patterns

• The previous example motivates our feeling:

once the technological problems with per-packet TC will be solved, **a combination of periodical TC** (to adjust the maximum transmit power and send broadcast messages) **and per-packet TC** (to send point-topoint messages) **will be the best choice**

