(Indoor) Localization of Sensors

Motivation

- Astonishing growth of wireless systems in last years
 - Wireless system used in large number of applications
- Wireless information access has become ubiquitous
- Gave rise to location-based services
 - Navigation systems, location-aware social networks, ...
- High demand of location information
 - both in outdoor and indoor environments
 - Outdoor mostly solved with GPS or Galileo
 - Indoor localization is still an open issue

Types of location information

- Physical vs Symbolic location
 - Physical location: 2D or 3D coordinates referring to a map (e.g. latitude and longitude)
 - Symbolic location: natural language information (e.g. near the fridge, in the bedroom, etc.)
- Absolute vs Relative location
 - Absolute: uses a shared reference system
 - Relative: each object has its own frame of reference (e.g. proximity to an access point or position with respect to a destination)

Types of location information

- It is always possible to convert absolute location in relative location
- A relative location can be converted into an absolute one if:
 - The absolute position of the reference points is known
 - Multiple relative readings are available
 - ...but there's a need for a triangulation algorithm

Indoor localization systems

- Localization achieved by exchange of radio signals
- Three components :
 - Signal transmitter and receiver (HW)
 - Measuring unit (HW)
 - that uses received signals to make measurements of distances, angles etc. (also called ranging)
 - Localization algorithm (SW)
 - That uses the above information to determine the positioning of an object

Indoor localization systems

- Two main topologies:
 - Remote positioning: the unit to be localized is mobile and acts as transmitter. The measuring units (anchors) are fixed. A fixed location manager (may be an anchor) executes the localization algorithm
 - *Self-positioning*: the unit to be localized is mobile, makes the measurements and runs the localization algorithm
 - This unit receives the signal from fixed anchors (whose position is known) that are only transmitters
- Two derived topologies:
 - *Indirect remote positioning*: similar to self-positioning, but the mobile sends its location to a remote location manager
 - *Indirect self-positioning*: similar to remote positioning, but the location manager sends the position to the mobile

Measuring principles and positioning algorithm

Triangulation

Lateration (*range-based*)

- Time of Arrival (ToA)
- Time Difference of Arrival (TDoA)
- Received Signal Strength (RSS)
- Roundtrip Time of Flight (RToF)
- Received Signal Phase (RSP)

Angulation

• Angle of Arrival (AoA)

Scene analysis (fingerprinting)

Probabilistic methods

K-Nearest Neighbors (kNN)

Neural Networks

Radio Tomography

Proximity

Radio Frequency Identifier (RFID)

Passive Infrared (PIR)

WSN Multihop proximity

Triangulation

- Uses geometric properties of triangles to estimate target location
- Two approaches:
 - Lateration: estimates position of an object based on its distance from reference points (also called range-based localization)
 - Angulation: estimates position based on the angles between the lines connecting the object and the reference points

- The distance between a measuring unit and a mobile target is directly proportional to propagation time
- How it works
 - The mobile target emits a radio signal at time t
 - The measuring unit receives the radio signal at time t'
 - The measuring unit estimates the distance as (t'-t)/p
 - Where p is the propagation speed of the signal
- Issues:
 - Requires tight synchronization of transmitter and receiver
 - The signal must encode the transmission time (t)

- To compute the position of the mobile target in 2D are required at least 3 measurements from 3 different anchors
- The position can be computed with different methods:
 - Intersection of circles centered in the anchors

- Other positioning method:
 - Solving a non-linear optimization problem (least squares)
 - the unknown are *t*, the coordinates (*x*,*y*) of the mobile target
 - The coordinates of anchors $(x_1, y_1), ..., (x_n, y_n)$ are known
 - The time of arrival of the signal at the anchors $t_1,...,t_n$ are known
 - *c* is the light speed

$$\min \sum_{i=1}^{n} \left| c \cdot (t_i - t) - \sqrt{(x_i - x)^2 + (y_i - y)^2} \right|$$

- In some applications, the ToA is implemented by using signals of different nature, e.g. radio and acoustic:
 - The radio signal is used to synchronize the measuring units
- The difference in time between the arrival of the two signals is (almost) proportional to the distance
 - Because the radio signal is order of magnitudes faster than the acoustic signal
- Some systems use ultrasound
 - Cricket motes, Active Bat, etc.

Time Difference of Arrival (TDoA)

- Uses the difference between the arrival times at the measuring units (rater than the absolute time)
- For each TDOA measurement, the transmitter must lie in a hyperboloid with a constant range difference between any two measuring units
- For example, in 2D:

TOA and TDoA

- Both system work well if transmitter and measuring units are in Line Of Sight (LOS)
- If not, the signal is affected by multipath that affects time of arrival and angle

Received Signal Strength (RSS)

- Radio signal attenuates with distance
 - Power of the signal decays with an exponential rule
- There is a relationship between signal attenuation and distance

Received Signal Strength (RSS)

 Friis equation: estabilish a relationship between transmission power and distance between transmitter and receiver

$$P_R = P_T \frac{G_T G_R \lambda^2}{(4\pi)^2 d^n}$$

- P_T e P_R : signal power at transmitter and receiver (in Watt)
- G_T e G_R : antennas gain (at transmitter and receiver)
- λ: wave length
- *d*: distance between the transmitter and receiver
- n: path loss (usually between 2 and 4)

Received Signal Strength (RSS)

- Signal attenuation depends on the environment.
- There are many models that relate distance with transmission and received power.
- Converting Watt in dBm:
 - $P[dBm]=10 \log_{10} (10^{3}P[W])$
- and combining with Friis equation we obtain:
 - RSS= (10 $n \log_{10} d A$)
- where
 - *A* is attenuation of the signal at a reference distance (typically 1 m)
 - n is the path loss (typically in the range [2,4])

Received Signal Strength (RSS)

Power vs distance

Received Signal Strength (RSS)

In indoor environments the RSS worsens significantly

Received Signal Strength (RSS)

Ideal situatio

courtesy of F.Potortì, A.Corucci, P.Nepa, P.Barsocchi, A.Buffi

Received Signal Strength (RSS)

Ideal situation:

Received Signal Strength (RSS)

- Realistic situation
 - 3° order reflections

Received Signal Strength (RSS)

- Realistic situation
 - 3° order reflections

Roundtrip Time of Flight (RToF)

- The transmitter and the measuring unit are the same
- The device to be localized is only a transponder
 - receives the signal and sends it back
- The measuring unit measures the difference between the time of transmission t₁ and the time of reception t₂
 - distance = $c^*(t_1 t_2)/2$
- Reduces the need of synchronization with respect to ToA
 - At small ranges, the processing time of the transponder and measuring unit are not negligible and must be estimated accurately

Roundtrip Time of Flight (RToF)

Received Signal Phase (RSP)

Assumes the transmitter sends a pure sinusoidal signal

Received Signal Phase (RSP)

- Based on the received phase of the signal, the measurement unit estimates the distance
 - This holds within a wave length
- Once distance is known it uses the same triangulation algorithm as ToA
- For distances larger than a wave-length it does not work
- Requires LOS between transmitter and receiver

Triangulation - angulation

Angle of Arrival (AoA)

- Target location obtained by the intersection of several pairs of angle direction lines
- 2D: Requires at least two reference points and the respective angle measurements
- 3D: Requires at least three reference points and the respective angle measurements

Triangulation - angulation

Angle of Arrival (AoA)

- Requires directional antennas
 - Usually not available in sensors
 - More expensive and larger
 - Often implemented as arrays of antennas
- Angle measurement should be very accurate
 - Again multipath and reflection affect the measurements

- Exploits maps of RSSs measurements with respect to a set of anchors
- Measurements usually in a grid of points
 - For each point i in the map, is defined a tuple of RSS measurements R_i

- At runtime, the position of a target is determined by measuring the RSS of the target with respect to the anchors
 - This produces a new tuple *R* of RSSs
 - R is compared against all the tuples R_i
 - The position of the mobile target is approximated with the position of the point (or points) whose tuple is most similar to *R*
- To find the suitable points can be used either probabilistic methods, neural networks of KNN

kNN

- Let $R = <\mathbf{r}_1,...,\mathbf{r}_n>$; $R_i = <\mathbf{r}_{i,1},...,\mathbf{r}_{i,n}>$;
- Find *k* points for which the least mean square:

$$\sqrt{\frac{1}{n}\left(\left(r_{1}-r_{i2}\right)^{2}+...\left(r_{n}-r_{in}\right)^{2}\right)}$$

- is minimum
- The position of the target can be estimated as the average position (center of mass,...) among these k points

Radio Tomography

- A recent technique
- Exploits a grid of anchors usually deployed at the sides of a room
- The anchors exchange beacons with each other
- If a target cuts the line of sight this results in a significant change in the RSS along a link
 - ...but not so easy, a target also affects other links due to multipath

Radio Tomography

1	RSS(1,2),, RSS(1,6), time
•••	•••
6	RSS(6,1),, RSS(6,5), time

RSS of each link (6.5/2 columns)

Sliding table: time

Let E_{RSS} be the average of the RSS on the links when there is no target

Radio Tomography

Uses $\sigma_{1,2}$, ..., $\sigma_{5,6}$ and E_{RSS} to compute VRTI (solves an optimization problem)

Each pixel is dependent on the crossing links (link 2,4 and link 3,4)

Radio Tomography

- See the animation
 - 25 sensors
 - Acquisition rate: 0.11 seconds

WSN multihop proximity

- Also called Range-Free localization: estimate position of objects based on connectivity information
- Cost-Effective: No special hardware for ranging
- Topology based (hop counting) techniques
 - Already discussed in the previous section
- Low precision

Performance metrics

- Accuracy (location error)
 - Usually measured as mean distance error between real position and estimated position of the target
- Precision
 - Measures the self-consistency of the system
 - In different trials, how does the accuracy varies?
 - Measured with the distribution of the localization accuracy

Performance metrics

- Complexity
 - Hardware but also communications and algorithms
- Robustness
 - To noisy signals, failure of anchors, non LOS
- Scalability
 - Coverage v.s. positioning performance
- Cost

Summary

