Text Analytics 2018
 Homework 1

Regular Expressions

Describe the class of strings matched by the following regular expressions:

1. $[\mathrm{a}-\mathrm{ZA}-\mathrm{Z}]+$
2. $[\mathrm{A}-\mathrm{Z}][\mathrm{a}-\mathrm{z}]^{*}$
3. $\backslash d+(\backslash . \backslash d+)$?
4. ([bcdfghjklmnpqrstvwxyz][aeiou][bcdfghjklmnpqrstvwxyz])*
5. $\backslash \mathrm{w}+[[\wedge \mid \mathrm{w} \backslash \mathrm{s}]+$

Write regular expressions to match the following classes of strings:

1. A single determiner (assume that "a", "an", and "the" are the only determiners).
2. An arithmetic expression using integers, addition, and multiplication, such as $2 * 3+8$.

T9

Write regular expressions that will recognize letters associated to keys on a phone keyboard, i.e.

Write a function, which, given a collection (for example the NPS chat collection:
http://nltk.googlecode.com/svn/trunk/nltk_data/packages/corpora/nps_chat.zip, for which you can find the cleaned up list of words here:
http://didawiki.cli.di.unipi.it/lib/exe/fetch.php/magistraleinformatica/eln/nps_chat.zip), collects probabilities from word occurrences, and given a sequence of numbers, displays the most likely words corresponding to those keys, with associated probability.

Zipf's Law

Let $f(w)$ be the frequency of a word w in free text. Suppose that all the words of a text are ranked according to their frequency, with the most frequent word first. Zipf's law states that the frequency of a word type is inversely proportional to its rank (i.e. $f^{*} r=k$, for some constant k). For example, the 50th most common word type should occur three times as frequently as the 150th most common word type. (See Foundations of Statistical Natural Language Processing (Manning \& Schutze), pp. 23-24, for more information on Zipf's Law.)

Write a Python function p 4 () to process a large text and plot word frequency against word rank using the nltk.draw.plot graph module (alternatively one can use http://matplotlib.org/). Do you confirm Zipf's law?

