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Data collection



Garbage In - Garbage Out
The quality of the output of any supervised learning process is limited by 
the quality of the supervised information fed in input.
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Garbage In - Garbage Out
The quality of the output of any supervised learning process is limited by 
the quality of the supervised information fed in input.

● How to the get input data of good quality?
● How to measure the quality of input?

Corollary: output will be likely worse than input.

● How to determine the best quality of output we can expect?
● How to measure the quality of output?



Data Collection
Data collection is a crucial step of the process, since it determines the 
knowledge base on which any successive process will work on.

● Find the source/sources

● Set up the data collection method

● Get the data

● Prepare the data for successive processing.



Data Collection
Depending on problems and goals, there are many possible data sources.

Web based:

● Online survey, e.g., SurveyMonkey, Google survey, Google forms.

○ Survey services offer demographic targeting

● Web feeds, e.g., RSS, Atom.

○ Most news companies offer a RSS version of their content organized by topic.

● Social networks’ APIs. E.g., twitter, facebook, and many other.

● Archives. E.g., Reddit, archive.org.

● Custom web crawling and scraping. E.g., Scrapy.

https://www.surveymonkey.com/
https://www.google.com/analytics/surveys/
https://docs.google.com/forms
https://en.wikipedia.org/wiki/RSS
http://www.nytimes.com/services/xml/rss/index.html
https://developer.twitter.com/en/docs
https://developers.facebook.com/docs/graph-api/
https://github.com/ptwobrussell/Mining-the-Social-Web-2nd-Edition/tree/master/ipynb
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/
https://archive.org/details/datasets
https://scrapy.org/


Data Collection
Companies may accumulate information from other sources:

● feedback channels (email, telephone, sms, handwritten)

● note in customer profiles

...or more traditional questionnaires and interviews:

● Computer-assisted telephone interviewing (CATI), 

● Automated Computer Telephone Interviewing (ACTI)



Building a training set
A training set is composed by samples of documents correctly annotated with 
respect to the goal of the task.

A few sources already provide annotations, e.g., product reviews.

● These are the typical scenarios tested in research because they avoid the 
cost of data annotation.

Most practical applications obviously come without annotations, e.g., real time 
filtering of a stream of tweets with respect to a topic of relevance.

● Domain experts are required to annotate the data

● Semi/distant supervision may produce some automatic annotations



Building a training set
Whenever possible, the annotation should be performed by more than one 
annotator.

● Annotators work together on an initial set of documents, to agree/align 
on how to annotate documents.

● Annotators work separately on a shared set of documents, to make 
possible to measure the inter-annotator agreement.

● Each annotator works a distinct set of documents, to increase the 
coverage of the training set (i.e., a larger number of different documents 
is annotated)



Inter-annotator agreement
Given a set of documents independently annotated by two or more 
annotators, it is possible to measure the agreement between annotators.

● Considering in turn the annotations of one annotator as the correct ones

● Then considering those produced by another annotator as predictions 
and evaluating its accuracy/recall/precision/f1/… 

It will be hard for a ML predictor to score a level of accuracy better than the 
one measured between humans.

Inter-annotator agreement defines a good upper bound on the achievable 
accuracy.

● Yet, super-human performance happen [1] [2] [3] [4]

http://www.iflscience.com/technology/googles-new-ai-has-superhuman-ability-locate-when-your-image-was-taken/
http://www.businessinsider.com/ibm-speech-recognition-almost-super-human-2017-3?IR=T
http://www.sciencemag.org/news/2017/04/self-taught-artificial-intelligence-beats-doctors-predicting-heart-attacks
https://www.stanforddaily.com/2017/11/28/stanford-researchers-algorithm-diagnoses-pneumonia-better-than-doctors/


Experiments



Training-Validation-Test
When running an experimental activity annotated data is usually split in 
two/three parts:

● A training set, which is the actual data on which the ML algo is trained.

● A validation set, which is held out data used for optimization

○ The validation set is often not explicitly identified as it is up to the research to choose to 
use it or not. 

● A test set, which is the data on which the optimized model is evaluated.

Information from test set must be NEVER used in training data or in any 
decision regarding the definition of the training process.

There are many ways to actually perform the split.



Single fixed split
Data is split once and for all in a single training set and a single test set.

Pros:

● easy to reproduce
● reasonable to do on time-related data (training data comes before test 

data)
● experiments are quick to run

Cons:

● risk of overfitting test data on the long run
● risk of low statistical relevance (test set must be large)



K-fold validation
Data is split in k equal sized sets.
For k times, k-1 sets are used as the training set 
and the remaining one as the set set.

Pros:

● improved statistical relevance (the whole 
dataset is a test set)

Cons

● reproducible by knowing how splits are made
● must check fold composition
● cost of experiment grows linearly with k



Leave-one-out validation
This is an extreme setup of k-fold validation in which k is set to be equal to the 
dataset size. Test set for each fold is just one document.

Pros:

● really easy to reproduce
● good statistical relevance

Cons:

● very high cost



Random splits
A split proportion is determined, e.g., 80%/20%. For an 
arbitrary number of times a random train/test split is 
created and the  accuracy measures are recorded.

Pros:

● high statistical relevance
● cost is flexible, can run it until you have resources

Cons:

● hard to reproduce exactly
● requires statistical analysis to put results together



Optimization of parameters
Experimental setups may have many parameters that must be set and that 
can have an impact on the quality of results:

● Which features to extract?

● What lexicons to use, how?

● Use of tagging, parsing. How to use it?

● Feature selection: measures and amount

● Weighting functions

● Learner and its parameters



Optimization of parameters
Optimization is made against a specific evaluation measure.

A grid search on all the candidate values of all the parameters can produce an 
explosion in combinations.

For example:

● 5 feature types, testing each feature independently, all together, and all 
possible pairs.

● 5 feature selection levels

● 10 values for the C parameter of SVM

produce a total of (5single + 1all + 10pairs) · 5 · 10 = 800 configurations to be 
tested



Optimization of parameters
Parameters with loose correlation can be optimized in sequence.

● First optimize feature selection amount the optimize C value for SVM

Parameters with lots of possible values can be optimized in two step: coarse 
search, and refinement.

kNN ∈ {1, 5, 10, 15, 20, 25, 30, 35, 40} → {6, 7, 8, 9, 11, 12, 13, 14}

For some numeric parameters a logarithmic search scale is fine.

CSVM ∈ {0.001, 0.01, 0.1, 1, 10, 10, 1000}



Optimization of parameters
Once a grid of configuration for experiments is 
defined,

● all the experiments can be run exhaustively, 
or... 

● configurations are randomly sampled from 
the grid, and the relative experiment is 
executed, until a given experiment budget is 
consumed.

Sklearn has implementations of both methods.

http://scikit-learn.org/stable/modules/grid_search.html


Beware of Machine Learning Gremlins!

http://www.youtube.com/watch?v=tleeC-KlsKA

