Language Model

Giuseppe Attardi

Text Analytics

Outline

e Language Modeling (N-grams)
= N-gram Intro
= The Chain Rule
= The Shannon Visualization Method
= Evaluation:
e Perplexity
= Smoothing:
e Laplace (Add-1)
e Add-prior

Probabilistic Language Model

e Goal: assign a probability to a sentence
e Machine Translation:

= P(high winds tonite) > P(large winds tonite)
e Spell Correction

= “The office is about fifteen minuets from my house"
e P(about fifteen minutes from) > P(about fifteen minuets from)

e Speech Recognition
= P(l saw a van) >> P(eyes awe of an)

e Summarization, question--answering, etc.

Why Language Models

e We have an English speech recognition system, which answer is better?

Speech Interpretation

speech recognition system
speech cognition system
speck podcast histamine

AE—F A R

e Language models tell us the answer!

Language Modeling

e We want to compute
P(w ,w,,w,w, we...w)= P(W)
= the probab111ty of a sequence

o Alternatively we want to compute

Pww ,w,,w,w,)

= the probability of a word given some previous words
e The model that computes

P(W) or

Pw [w,w,..w)

is called the Ianguage model.
e A better term for this would be “The Grammar”

e But “Language model” or LM is standard

Computing P(W)

e How to compute this joint probability:

29 ¢¢

P(“the’,, ”Other,’, lldayDS, III”, llwasﬂﬁ, Hwalking,’, “along : and”,
Ccsawﬂﬂ, CCaQQ, CClizardﬂﬁ)

e Intuition: let’s rely on the Chain Rule of Probability

The Chain Rule

e Recall the definition of conditional probabilities

P(AAB)
P(4)

P(AAB)=P(A)P(B| 4)

P(B|A)=

e Rewriting:

e More generally
P(4,B,C.D) = P(A)P(B|A)P(C|4,B)P(D|4,B,C)
e |In general

P(x X% 5,...x) = P(x)P(x,|x,)P(x,)x ,x,)...P(x [x ...x)

The Chain Rule applied to joint probability of words in sentence

P(w}) = P(wp)P(wa|w1)P(w3 \w%) ses P (Wi \w’l’ =1)

1
- H P(w-v/\.,hvli'—l)
k=1

P(“the big red dog was”) =
P(the) » P(big|the) ® P(red|the big) ® P(dog|the big
red) e P(was|the big red dog)

Obvious estimate

e How to estimate?

P(the | its water is so transparent that)

P(the | its water is so transparent that) =

C(its water is so transparent that the)

C(its water is so transparent that)

Unfortunately

e There are a lot of possible sentences

e We will never be able to get enough data to compute the statistics for
those long prefixes

P(lizard|the,other,day,l,was,walking,along,and,saw,a)
or

P(thelits water is so transparent that)

Markov Assumption

e Make the simplifying assumption
P(lizard|the,other,day,l, was,walking,along,and,saw,a) = P(lizard|a)

e Or maybe
P(lizard|the,other,day,l, was,walking,along,and,saw,a) = P(lizard|saw,a)

Markov Assumption

« So for each component in the product, replace with the
approximation (assuming a prefix of N)

P (wplw|) = P(wnlwn _N+1

« Bigram model

P(wow! ") = P(wyw,_,)

N-gram models

e We can extend to trigrams, 4--grams, 5--grams

e In general this is an insufficient model of language

= because language has long--distance dependencies:

= “The computer which | had just put into the machine room on the fifth floor
crashed.”

e But we can often get away with N--gram models

Estimating bigram probabilities

The Maximum Likelihood Estimate

n—1
count(w__ ., Wn)

P (wpw!) =

count(w,_,Wp)

n—-1y __
P(W”‘Wl) = count(w,_,)

An example

<s>| am Sam </s>
<s>Sam | am </s>
<s> | do not like green eggs and ham </s>

This is the Maximum Likelihood Estimate, because it is the one which
maximizes P(Training set|Model)

Maximum Likelihood Estimates

e The Maximum Likelihood Estimate of some parameter of a model M
from a training set T
= is the estimate that
= maximizes the likelihood of the training set T given the model M

e Suppose the word “Chinese” occurs 400 times in a corpus of a million
words (e.g. the Brown corpus)

e What is the probability that a random word from some other text will be
“Chinese”

e MLE estimate is 400/1000000 = .004
= This may be a bad estimate for some other corpus

e Butitis the estimate that makes it most likely that “Chinese” will occur
400 times in a million word corpus.

Maximum Likelihood

We want to estimate the probability, p, that individuals are
infected with a certain kind of parasite.

Ind. | Infected | Probability of
observation
1 1 p
2 0 1—p
3 1 p
4 1 p
3} 0 1-p
6 1 p
7 1 p
8 0 1—p
9 0 1-p
10 1 p

The maximum likelihood
method (discrete distribution):

1. Write down the probability of
each observation by using the
model parameters

2. Write down the probability of

all the data

Pr(Data| p) = p°(1- p)*

3. Find the value parameter(s)

that maximize this probability

Maximum likelihood

We want to estimate the probability, p, that individuals are
infected with a certain kind of parasite.

Likelihood function:

Ind. | Infected | Probability of
observation L(p) _ Pr(Data | p) _ p6(1 _ p)4
; (1) ll_?p - Find the value parameter(s) that
3 1 D maximize this probability
4 1 p g_
) 0 1-p -
6 1 p _ g -
7 1 p é i
8 0 1—p 81
9 0 1-p §: V
0] 1 P o @ e o9 oo 6

Computing the MLE

e Setthe derivative to O:

_d s 4
O—dpp (1-p)
6p° (1-p)' = p°4(1-p) =
p’(-p)’[6(1-p)—4p)=

p’(1-p)’[6—10p]

e Solutions:
= p=0 (minimum)
= p=1 (minimum)
= p=0.6 (Maximum)

More examples: Berkeley Restaurant Project

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i'm looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available
i'm looking for a good place to eat breakfast

when is caffe venezia open during the day

Raw bigram counts

Out of 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

Normalize by unigrams (divide by C(w_)):

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
Result:
1 want | to eat chinese | food | lunch | spend

1 0.002 03310 0.0036 | O 0 0 0.00079
want 0.0022 |0 0.66 | 0.0011{ 0.0065 | 0.0065 | 0.0054|0.0011
to 0.00083 | 0 0.0017(0.28 | 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.0027 | 0 0.021 0.0027 [0.056 |0
chinese || 0.0063 | O 0 0 0 0.52 [0.0063|0
food 0.014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch | 0.0059 |0 0 0 0 0.0029 | O 0
spend | 0.0036 |0 0.0036 | 0 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
P(i|<s>) x
P(want|l) x
P(english|want) x
P(food|english) x
P(</s>|food)
=.000031

What kinds of knowledge?

P(englishlwant) = .0011
P(chinese|lwant) = .0065
P(tolwant) = .66

P(eat | to) = .28

P(food | to) =0

P(want | spend) = 0

P@i| <s>)=.25

Practical Issues

e Compute in log space
= Avoid underflow
= Adding is faster than multiplying

log(p, *p, * ps* p,) =log(p)) + log(p,) + log(p,) + log(p,)

Shannon’s Game _

e What if we turn these models around and use
them to generate random sentences that are
like the sentences from which the model was
derived.

The Shannon Visualization Method

e Generate random sentences:

e Choose a random bigram <s>, w according to its probability

e Now choose a random bigram (w, x) according to its probability
e And so on until we choose </s>

e Then string the words together
<s> 1
I want
want to
to eat
eat Chinese
Chinese food
food </s>

Approximating Shakespeare

Unigram
To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
Every enter now severally so, let
Hill he late speaks; or! a more to leg less first you enter
Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like
Bigram
What means, sir. I confess she? then all sorts, he is trim, captain.
Why dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry. Live king. Follow.
What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?
Trigram
Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
This shall forbid it should be branded, if renown made it empty.
Indeed the duke; and had a very good friend.
Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
Quadrigram
King Henry.What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv’d in;
Will you not tell me who I am?
It cannot be but so.
Indeed the short and the long. Marry, "tis a noble Lepidus.

Shakespeare as corpus

e N=884,647 tokens, V=29,066

e Shakespeare produced 300,000 bigram types out of
V2= 844 million possible bigrams: so, 99.96% of the
possible bigrams were never seen (have zero entries in

the table)
e Quadrigrams:
= What's coming out looks like Shakespeare because it is
Shakespeare

The Wall Street Journal is not Shakespeare (no offense)

Unigram
Months the my and 1ssue of year foreign new exchange’s september were recession ex-
change new endorsed a acquire to six executives

Bigram
Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor
would seem to complete the major central planners one point five percent of U. S. E. has
already old M. X. corporation of living on information such as more frequently fishing to

keep her
Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three
percent of the rates of interest stores as Mexico and Brazil on market conditions

Lesson 1: the perils of overfitting

e N-grams only work well for word prediction if the test corpus looks like
the training corpus

= In real life, it often doesn’t
= \We need to train robust models, adapt to test set, etc.

Train and Test Corpora

e A language model must be trained on a large corpus of text to estimate
good parameter values.

e Model can be evaluated based on its ability to predict a high probability
for a disjoint (held-out) test corpus (testing on the training corpus
would give an optimistically biased estimate).

e Ideally, the training (and test) corpus should be representative of the
actual application data.

e May need to adapt a general model to a small amount of new
(in-domain) data by adding highly weighted small corpus to original
training data.

Smoothing

Since there are a combinatorial number of possible word
sequences, many rare (but not impossible) combinations
never occur in training, so MLE incorrectly assigns zero to
many parameters (aka sparse data).

If a new combination occurs during testing, it is given a
probability of zero and the entire sequence gets a
probability of zero (i.e. infinite perplexity).

In practice, parameters are smoothed (aka regularized) to
reassign some probability mass to unseen events.

= Adding probability mass to unseen events requires removing it from
seen ones (discounting) in order to maintain a joint distribution that
sums to 1.

Smoothing is like Robin Hood:
Steal from the rich and give to the poor (in probability mass)

e \When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

e Steal probability mass to generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

Slide from Dan Klein

attack

man

outcome

allegations l
reports l

claim

attack

man

outcome

i

reques

Laplace smoothing

e Also called add-one smoothing
e Just add one to all the counts!
e Verysimple

e MLE estimate:

e Laplace estimate:

e Reconstructed counts:

C,'-I—l

' Laplace(w) = N1V

N

c; = (ci+ 1)N+V

Laplace smoothed bigram counts

Berkeley Restaurant Corpus

1 want | to eat chinese food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 i | 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 L7 5 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Laplace-smoothed bigrams

P*(Wn‘wn—l) —

C(wn—lwn) +1

C(Wn— 1) +V

1 want to eat chinese | food lunch spend
i 0.0015 0.21 0.00025| 0.0025 0.00025(0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046 | 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062 | 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056 | 0.00056| 0.00056| 0.00056(0.0011 0.00056 | 0.00056
spend 0.0012 0.00058 [0.0012 0.00058 | 0.00058| 0.00058| 0.00058 | 0.00058

Reconstituted counts

C*(Wn—lwn) —

[C(Wn—lwn) + 1] X C(Wn—l)

C(Wn—l) +V

1 want to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 29 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 032| 016 032 0.16 0.16 0.16 | 0.16 0.16

Note big change to counts

e C(C(want to) went from 608 to 238!
e P(to|lwant) from 0.66 to 0.26!

e Discountd = c*/c
= d for “chinese food” =0.10 A 10x reduction!
= Soin general, Laplace is a blunt instrument

e But Laplace smoothing not used for N-grams, as we have much better
methods
e Despite its flaws Laplace (add-k) is however still used to smooth other

probabilistic models in NLP, especially

= For pilot studies
* in domains where the number of zeros isn’t so huge.

Add-k

e Add a small fraction instead of 1
e k=0.01

Even better: Bayesian unigram prior smoothing for bigrams

e Maximum Likelihood Estimation

e Laplace Smoothing

C(w,w,)+1
C(w,)+ vocai

PLaplacé W2 IVVl) o
e Bayesian Prior Smoothing

Clw,w,)+ P(w,)
P, (w, |w)=—"2+2 Z
Prlor(2| 1) C(VVl)-l-l

Lesson 2: zeros or not?

e Zipf's Law:
= A small number of events occur with high frequency
= Alarge number of events occur with low frequency
= You can quickly collect statistics on the high frequency events
* You might have to wait an arbitrarily long time to get valid statistics on low
frequency events

e Result:
= Qur estimates are sparse! no counts at all for the vast bulk of things we want to

estimate!

= Some of the zeroes in the table are really zeros But others are simply low frequency
events you haven't seen yet. After all, ANYTHING CAN HAPPEN!

= How to address?

e Answer:
= Estimate the likelihood of unseen N-grams!

Slide from B. Dorr and J. Hirschberg

Lipf's law

Word Freq. Rank f+r Word Freq. Rank Fa r
f) (r) () (r)

the 3332 1 3332 turned 51 200 10200
and 2972 2 5944 you'll 30 300 9000
| 1775 3 5235 name 21 400 8400
he 877 10 8770 comes 16 500 8000
but 410 20 8400 group 13 600 7800
be 294 30 8820 lead 11 700 7700
there 229 40 8880 friends 10 800 8000
one 172 50 8600 begin 9 900 8100
about 158 60 9480 family 8 1000 8000
more 138 70 9660 brushed 4 2000 8000
bavar 124 80 ‘9920 sins 2 3000 6000
Oh 116 90 10440 Could 2 4000 8000

Applausive 1 8000 8000

two 104 100 10400

fo/r (f proportional to 1/r)
there is a constant k such that
f.r=k

[ipf's Law for the Br

100000

frequency
1000 10000

100

10

[ipf law: interpretation

= Principle of least effort: both the speaker and the hearer in
communication try to minimize effort:
= Speakers tend to use a small vocabulary of common (shorter) words
= Hearers prefer a large vocabulary of rarer less ambiguous words
= Zipf's law is the result of this compromise

= Other laws ...
» Number of meanings m of a word obeys the law: m « 1~V/f
= |nverse relationship between frequency and length

Practical Issues

e We do everything in log space
= Avoid underflow
= (also adding is faster than multiplying)

P1 X p2 X p3 X pa = exp(log p1 + log p» +log p3 +log p4)

Language Modeling Tooll

e SRILM

http://www.speech.sri.com/projects/srilm/

e |[RSTLM
e Ken LM

Google N-Gram Release

All Our N-gram are Belong to You
By Peter Norvig - 8/03/2006 11:26:00 AM

Posted by Alex Franz and Thorsten Brants, Google Machine Translation
Team

Here at Google Research we have been using word n-gram models for a
variety of R&D projects, such as statistical machine translation, speech
recognition, spelling correction, entity detection, information extraction,

and others. While such models have usually been estimated from training

to share this enormous dataset with everyone. We processed

1,024 908,267,229 words of running text and are publishing the counts
forall 1,176,470,663 five-word sequences that appear at least 40 times.
There are 13,588,391 unique words, after discarding words that appear

less than 200 times.

Google Book N-gran

e http://ngrams.googlelabs.com/

Google N-Gram Release

serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223

serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Evaluation and -

Evaluation

e Train parameters of our model on a training set.
e How do we evaluate how well our model works?
e Look at the models performance on some new data

e This is what happens in the real world; we want to know how our model
performs on data we haven’t seen

e Use a test set. A dataset which is different than our training set

e Then we need an evaluation metric to tell us how well our model is
doing on the test set.

e One such metric is perplexity

Evaluating N-gram models

e Best evaluation for an N-gram

= Put model A in a task (language identification,
speech recognizer, machine translation system)

= Run the task, get an accuracy for A (how many langs
identified correctly, or Word Error Rate, or etc)

= Put model B in task, get accuracy for B
= Compare accuracy for A and B
= Extrinsic evaluation

Language ldentification task

e Create an N-gram model for each language

e Compute the probability of a given text
P Jang /(text)
Plang2(text)
Plang3(text)

Select language with highest probability
lang = argmax, P (text)

Difficulty of extrinsic (in-vivo) evaluation of N-gram models

e Extrinsic evaluation
= This is really time-consuming
= Can take days to run an experiment

e SO
= As a temporary solution, in order to run experiments

» To evaluate N-grams we often use an intrinsic evaluation, an
approximation called perplexity

= But perplexity is a poor approximation unless the test data looks
just like the training data

= So is generally only useful in pilot experiments (generally is not
sufficient to publish)

Perplexity

e The intuition behind perplexity as a measure is the
notion of surprise.

e How surprised is the language model when it sees the
test set?

= Where surprise is a measure of...
e Gee, | didn’t see that coming...

= The more surprised the model is, the lower the probability it
assigned to the test set

= The higher the probability, the less surprised it was

Perplexity

e Measures of how well a model “fits” the test data.
e Uses the probability that the model assigns to the test corpus.

e Normalizes for the number of words in the test corpus and
takes the inverse.

1
PP(W) = JS[/P
e Measures the weighted ve%vgvevﬁ'rgvrﬁé%ing factor in predicting
the next word (lower is better).

Perplexity

e Perplexity:
e Chainrule:

e For bigrams:

e Minimizing perplexity is the same as maximizing probability
* The best language model is one that best predicts an unseen test set

Perplexity as branching factor

e Let’s suppose a sentence consists of random digits
e How hard is the task of recognizing digits ‘0, 1, 2, 3,4,5,6, 7,8, 9’

e Perplexity: 10

1

PP(W) = Pwiwa...wy) ¥

1N
— N - N

1 -1
TI)

10

Lower perplexity = better model

e Model trained on 38 million words from the Wall
Street Journal (WSJ) using a 19,979 word vocabulary.

e Evaluation on a disjoint set of 1.5 million WSJ words.

T

Perplexity 962 170 109

Unknown Words

e How to handle words in the test corpus that did
not occur in the training data, i.e. out of
vocabulary (OOV) words?

e Train a model that includes an explicit symbol for
an unknown word (<KUNK>):

1. Choose a vocabulary in advance and replace other
words in the training corpus with <UNK>, or

2. Replace the first occurrence of each word in the
training data with <UNK>.

Unknown Words handling

e Training of <UNK> probabilities
= Create a fixed lexicon L of size V
= Any training word not in L changed to <UNK>
= Now we train its probabilities like a normal word

e At decoding time

= |[n text input: use <UNK> probabilities for any word not in
training

Advanced LM stuff

e Current best smoothing algorithm

Kneser-Ney smoothing

e Other stuff

Interpolation
Backoff
Variable-length n-grams

Class-based n-grams
e Clustering
e Hand-built classes

Cache LMs

Topic-based LMs
Sentence mixture models
Skipping LMs
Parser-based LMs

Word Embeddings

PKN ('wi \wi_ 1) —

discount

max(c(w; 1, w;) — 6,0)

Ew' C(wz‘_.l . w’) T /\“-'r 1 PKN (w,)

how likely it is to see the word w.
in an unfamiliar context

Backoff and Interpolation

If we are estimating:
= Trigram P(z|xy)
= but C(xyz) is zero
Use info from:
= Bigram P(z|y)
Or even:
= Unigram P(z)
How to combine the trigram/bigram/unigram info?

Backoff versus interpolation

o Backoff: use trigram if you have it, otherwise bigram,
otherwise unigram

e Interpolation: mix all three

Backoff

e Only use lower-order model when data for higher-order
model is unavailable

e Recursively back-off to weaker models until data is
available

n—1
Pkatz(w |Wn:]1\7+1 :{ P*(W |Wn N+1 lf C(N+1) >1
a(w,_ N+1) va: (W, [W N+2) otherwise

Where P*is a discounted probability estimate to

reserve mass for unseen events and a’s are back-off
weights (see book for details).

Interpolation

e Simple interpolation

P(Wn|wn—lwn—2) = 7‘~1P(WnIWn—lwn—2)
+A2P(Wp|W1) 2%=1
+7\3P(Wn)

Lambdas conditional on context:

P(Wn|wn—2wn—1) = M (WZ:%)P(Wnlwn—ZWn—l)
+A2 (W) P(WalWa—1)
+7~3(W?135)P (Wn)

How to set the lambdas?

Held-Out Data
Data

e Choose lambdas which maximize the probability of data
i.e. fix the N-gram probabilities
then search for lambda values that,
when plugged into previous equation,
give largest probability for held-out set
Can use EM (Expectation Maximization) to do this search

e Use a held-out corpus

Intuition of backoff+discounting

e How much probability to assign to all the zero trigrams?
= Use Good-Turing or other discounting algorithm

e How to divide that probability mass among different contexts?
= Use the N-1 gram estimates

e What do we do for the unigram words not seen in training?
= Qut Of Vocabulary = OOV words

Problem for N-Grams: Long Distance Dependencies

e Sometimes local context does not provide enough predictive
clues, due to the presence of long-distance dependencies.
= Syntactic dependencies

e “The man next to the large oak tree near the grocery store on the
corner is tall.”

e “The men next to the large oak tree near the grocery store on the
corner are tall.”

= Semantic dependencies

* “The bird next to the large oak tree near the grocery store on the
corner flies rapidly.”

e “The man next to the large oak tree near the grocery store on the
corner talks rapidly.”

e More complex models of language are needed to handle such
dependencies.

ARPA format

unigram: log p*(w;) Wi log ou(w;)
bigram: log p*(w;|w;_1) Wi_1W; log o(w;_1w;)
trigram: log p*(wi|wi_2,wi_1) Wi_aw;_1w;

\data\

ngram 1=1447
ngram 2=9420
ngram 3=5201

\l-grams:
-0.8679678
-99
-4.743076
-4.266155
=341 75267
-1.776296

\2-grams:
-0.6077676
-0.4861297
-2.832415
-0.5469525
-0.09403705

\3-grams:
-2.579416
-1.148009
-0.4120701
-0.3735807
-0.260361
-0.260361

\end\

</s>

<s>

chow-fun

fries

thursday

want

<s> 3

1 want

to drink

to eat

today </s>

<s> a i prefer
<s> about fifteen
to go to

me a list

at jupiter </s>

a malaysian restaurant

-1.068532
-0.1943932
-0.5432462
-0.7510199
-1.04292

-0.6257131
0.0425899
-0.06423882
-0.008193135

Language Models

e Language models assign a probability that a sentence is a legal string
in a language.

e They are useful as a component of many NLP systems, such as ASR,
OCR, and MT.

e Simple N-gram models are easy to train on unsupervised corpora
and can provide useful estimates of sentence likelihood.

e MLE gives inaccurate parameters for models trained on sparse data.

e Smoothing techniques adjust parameter estimates to account for
unseen (but not impossible) events.

Homework

e Write two programs
= train-unigram: Creates a unigram model

= test-unigram: Reads a unigram model and calculates entropy and coverage for the
test set

e Get data from https://github.com/neubig/nlptutorial/tree/master/test
o Test them test/01-train-input.txt test/01-test-input.txt

e Train the model on data/wiki-en-train.word

e Calculate entropy and coverage on data/wiki-entest.word

e Report your scores next week

Pseudo code: train-unigram

counts = {}
total count =0
for line in the training file:
words = line.split()
words.append(“</s>")
for word in words:
counts[word] +=1
total count +=1
open the model file for writing
for word, count in counts:
probability = counts[word]/total _count
print word, probability to model file

Pseudo-code: test-unigram

probabilities = {} W =29

for Line in model file: Il_JInIf ; 0
w, P = line.split() for Line in test file:
probabilities[w] = P words = line.split()

words.append(“</s>”)
for w in words:
W +=1
I:)=)\unk/V
if probabilities[w] exists
P += A, * probabilities[w]
else
unk += 1
H += -Llog,(P)
print “entropy = * + H/W
print “coverage = ” + (W - unk)/W

Summary

e Language Modeling (N-grams)

= N-grams

= The Chain Rule

* The Shannon Visualization Method
e Evaluation:

= Perplexity
e Smoothing:

* Laplace (Add-1)

= Add-k

= Add-prior

