
A Primer on
Neural Networks

Andrea Esuli

The origins
Neural networks (NN) are called "Neural" because their first formulation was
inspired to the biological structure of the brain of animals.

Dendrites collect signals from
terminal of other neurons that
are connected by synapses.

Depending on the collected
signals a neuron can itself
send a signal to other neurons
through its axon.

dendrites

nucleus

axon

terminalssynapse

The origins
Neural network (NN) are called "Neural" because their first formulation was
inspired to the biological structure of the brain of animals.

dendrites

nucleus

axon

terminalssynapse
adult human brain:

1 billion neurons

100-500 trillion
synapses

The origins
An artificial neuron:
● takes in input a vector of values
● combines them linearly with a weighted sum (pre-activation)
● fires a signal using a non-linear activation function f

o = f(𝛴xi wi)

The parameters of the model (that are fit at learning time) are thus the
vector of |i| weights (one for each of the|i| input values).

The activation function is a non-linear transformation.

Neural Network
A layer* in a network is a set |j| of neurons, i.e., a
|i|·|j| matrix of weights (and biases).

It produces as output a vector of length |j|.

The output of a layer is passed to its activation function and the result
become the input of the next layer (or the output if the layer is the last
one).

Without the nonlinearity introduced by the activation function, the network
would collapse into a simple linear transformation.

*This is a dense layer, also called fully-connected
layer. Other type of layers exist as we will see later.

https://commons.wikimedia.org/wiki/File:Multilayer_Neural_Network.png

Bias
A neuron usually have a bias value, i.e., a constant
value that is added to pre-activation.

Bias is not constant with respect to the learning
process, it is a parameter that is fitted exactly like
all the others.

Bias can be seen as the weight of an additional
input that is constantly one.

Bias enables to offset the (linear) pre-activation
value with respect to an all-zero input, similarly to
the intercept value of the line equation.

Activation functions

https://en.wikipedia.org/wiki/Activation_function

Forward propagation
The forward propagation (forward pass) is the process that transforms some
input data elaborating it through the levels of a neural network until some
output is produced.

Forward pass on a neural network with a two-neurons hidden layer with relu
activation and a single-neuron output layer with sigmoid activation.

Training a Neural Network
Weights in the matrix are initialized randomly (or with pre-trained values).
Weights must differ to break symmetry.

Training data is passed into the network (forward pass).

The output of the network is compared with the expected output (true label in
training data), computing the error the network made with respect to a loss
function.

Correction is made by means of backpropagation and gradient descent,
changing each weight so as to reduce the error.

https://machinelearning.wtf/terms/symmetry-breaking/
https://en.wikipedia.org/wiki/Backpropagation
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Gradient descent
The idea of gradient descent applied to NNs is pretty simple:

● The derivative df(x)/dx of a function f(x) indicates its slope.
○ df(x)/dx>0 means that a local increase/decrease of x increases/decreases f(x)
○ df(x)/dx<0 means that a local increase/decrease of x decreases/increases f(x)

● If we take as f(x) the error function (loss) of the network and as x a
weight of the network, by computing the derivative we can determine
how to change the weight so as to decrease the error.

For this to work it is necessary that all involved computations are
differentiable.

Backpropagation
Computing the derivative of all the parameters of a deep network can be
made efficient by

● exploiting the chain rule of derivatives and

● backpropagating gradients, i.e., starting the computation of gradients
close to the error function and reusing such computations for gradients
of elements that are more distant (thus navigating the network
backward).

Step by step training of a network with backpropagation.

Visual demo

https://en.wikipedia.org/wiki/Chain_rule
https://drive.google.com/file/d/1ulFBqWna3Vg6JV75UlUVYb-bfDNQ0z9Q/view?usp=sharing
https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=2&seed=0.68534&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Deep Learning
In 2012 AlexNet won the ImageNet image classification competition by a large
margin, by using NN.

Their network was a very large (and deep, for the standard of the time) one.

It revived NNs exploiting to two new factors: Big data and GPU.

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf

Convolutional Layer
A convolutional layer in a NN is
composed by a set of filters.
● A filter usually has a many

dimensions as the data type it is
applied to.

○ Images use 2D filters, text 1D.

● A filter combines a "local" selection
of input values into an output
value.

● All filters are "sweeped" across all
input.

Images from "A guide to convolution
arithmetic for deep learning" Vincent
Dumoulin, Francesco Visin

https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285

Convolutional Layer
● Filters have additional parameters that

define their behavior at the start/end
of documents (padding), the size of
the sweep step (stride), the eventual
presence of holes in the filter window
(dilation).

● During training each filter specializes
into recognizing some kind of relevant
combination of features.

● CNNs work well on stationary feats,
i.e., those independent from position. Images from "A guide to convolution arithmetic for

deep learning" Vincent Dumoulin, Francesco Visin

https://keras.io/layers/convolutional/#conv1d
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285

A pooling layer aggregates (max, average) output of
groups of units into a single value for the next layer.

● It reduces the number of parameters of the model
(downsampling)

● It contrasts overfitting.

● It add robustness to local variations (translation)

● It is used to convert variable length inputs, e.g., from
CNNs, to the have the fixed length, thus enabling
connecting segments of networks that produce output
of variable size to layers with fixed-size input.

Pooling
1.1

2.1

3.4

-1.2

2.3

5

0.4

-0.5

1.7

2.5

-5.4

0.7

3.4

5

2.5

1.35

1.8

-0.125

Max

Avg

A dropout layer randomly hides output of units
from a layer to the next.

● It is a regularization technique that contrasts
overfitting (i.e., being too accurate on
training data and not learning to generalize).

● It can also help breaking cases of symmetry
in the network.

Dropout

CNNs have been successfully applied on images.

● First level of a stack of CNNs capture local pixel features (angles, lines)

● Successive layers
combine features from
lower levels into more
complex, less local,
more abstract features.

[image source]

Convolutional Neural Network

http://vision03.csail.mit.edu/cnn_art/index.html
http://vision03.csail.mit.edu/cnn_art/index.html

Recurrent Neural Networks
o

A Recurrent Neural Network (RNN) is a neural
network in which connections between units form a
directed cycle.

Cycles allow the network to have a memory of
previous inputs, combining it with current input.

RNNs are fit to process sequences, such as text.

Text can be seen as a sequence of values at many
different levels: characters, words, phrases…

Suggested read

x
U

s
V

W

ot-1xt-1

U
st-1

V

W

otxt

U
st

V

W

ot+1xt+1

U
st+1

V

W

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

From feature engineering to network engineering
NN-based learning frees the knowledge
engineer from the burden of feature
engineering.

The layers in the NN can implicitly learn
abstract, high-level, semantic representation
from the raw input data.

But… the network has to be properly
designed in order to be able to perform the
assigned task, and the possible NN
configurations for a task are endless.

Software 2.0
Andrej Karpathy, Director of AI at Tesla.

"The “classical stack” of Software 1.0 is what we’re all familiar with…
...It consists of explicit instructions to the computer written by
a programmer….
In contrast, Software 2.0 is written in neural network weights."

"In the case of neural networks, we restrict the search to a continuous subset of
the program space where the search process can be made (somewhat
surprisingly) efficient with backpropagation and stochastic gradient descent."

https://medium.com/@karpathy/software-2-0-a64152b37c35

Software 2.0
Andrej Karpathy, Director of AI at Tesla.

"Software 2.0 is not going to replace 1.0 (indeed, a large amount
of 1.0 infrastructure is needed… ...), but it is going to take over
increasingly large portions of what Software 1.0 is responsible for.."

"Visual Recognition… Speech Recognition… Machine Translation… Games…
Robotics… Databases…"

https://medium.com/@karpathy/software-2-0-a64152b37c35

Deep Learning est mort...
Yann LeCun, Director of Facebook AI Research

"...the important point is that people are now building a new kind
of software by assembling networks of parameterized functional
blocks and by training them from examples using some form of
gradient-based optimization."

https://www.facebook.com/yann.lecun/posts/10155003011462143

...Vive Differentiable Programming
Yann LeCun, Director of Facebook AI Research

"An increasingly large number of people are defining the networks
procedurally in a data-dependent way (with loops and conditionals),
allowing them to change dynamically as a function of the input
data fed to them. It's really very much like a regular program,
except it's parameterized, automatically differentiated, and
trainable/optimizable..."

https://www.facebook.com/yann.lecun/posts/10155003011462143

Differentiable Programming
The backpropagation-based model of
fitting differentiable functions is
moving beyond NN.

Any code that is differentiable can be
seen as a model that can be fitted by
back propagation.

Google Tangent: source-to-source
debuggable derivatives in pure python.

https://github.com/google/tangent

Differentiable Programming
The backpropagation-based model of
fitting differentiable functions is
moving beyond NN.

Any code that is differentiable can be
seen as a model that can be fitted by
back propagation.

Google Tangent: source-to-source
debuggable derivatives in pure python.

https://github.com/google/tangent

