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Machine Learning
Machine learning (ML) is a discipline of Computer Science 
that is focused on how to enable a computer to perform 
a task without explicitly programming it. 

There are three main models of ML: 

● Supervised ML 
● Unsupervised ML 
● Reinforcement learning 



Supervised ML
The supervised ML model follows a learning by example metaphor.

To teach babies to recognize cats, you show them example pictures of what is 
a cat and what is not, so that each baby develops a internal model of the "cat" 
concept and uses it for recognition.

The correct assignments of "cat" and "not cat" labels are the supervised 
information needed to learn the model.

cat = not cat =



Unsupervised ML
In the unsupervised ML model there is no explicit goal reach.

The machine is presented with an input which can be processed freely in 
order to:

● give structure to the input data
● extract useful information that is latent in the input data

The output can be in human-readable 
form or used as the input of another 
process.



Semi-supervised ML
Semi-supervised ML is a in-between scenario between the supervised and 
unsupervised ones. 

The data the machine can work on is split into two parts: 

● a set of labeled data, usually small 

● a set of unlabeled data, usually large



Semi-supervised ML
Semi-supervised approaches may vary a lot, but they all share some intuitions: 

● leveraging on the few labeled examples to model what the goal is 

● heuristically applying the labels on unlabeled data exploiting the 
similarities with labeled data 

● use the enlarged labeled data set to better generalize the model 



Reinforcement Learning
The reinforcement learning model is a 
biologically-inspired model in which an agent 
acts in an environment, observing the outcome 
of its actions and adapting its behavior to fit in 
the environment. 

There is no concept of example, like in 
supervised learning. 

There is a concept of reward (either positive or 
negative) with respect to the actions taken 
during the exploration. 



ML for Text Mining



Unsupervised TM
Unsupervised TM applications are typically oriented toward a relatively 
low-cost inspection of the gathered data, in order to: 

● explore the data composition and quality 

● visualize some of its properties 

● support the definition of a (supervised) classification schema 

● annotate latent properties of data for successive use by other TM 
methods 



Unsupervised TM 
Some unsupervised TM processes: 

● topic modeling

● clustering 

● lexical analysis 

● summarization (also done in a supervised way) 



Clustering
Clustering is the task of grouping a set of items by their similarity so that items 
in the same group (i.e., a cluster) are more similar to each other than to the 
other objects. 

The similarity model is a key element of the process. 

For example, similarity can be expressed as: 

● a (metric) distance between items 

● closeness in terms of graph walk distance 

● position in a space modeled as density regions or probability distributions 

https://en.wikipedia.org/wiki/Cluster_analysis#Algorithms


Text Clustering
Document clustering can be performed in order to support various tasks, e.g.: 

● ease document browsing 

● visualize documents distribution 

● support the definition of a classification schema 

● improve the efficiency of (web) search 

○ reduced index size, quicker search 

○ enrich search results 

http://www.charuaggarwal.net/text-cluster.pdf


Text Clustering
Clustering in scikit-learn:

...

pipeline = Pipeline([

(’vect’, CountVectorizer(analyzer=analyzer, min_df=5)),

(’tfidf’, TfidfTransformer()),

])

X = pipeline.fit_transform(texts)

clusterer = KMeans(n_clusters=args.clusters)

labels = clusterer.fit_predict(X)



Supervised TM 
Supervised text mining problem have an explicit goal, modeled by a set of 
training examples provided in input:

● classification

● regression

● extraction

● summarization

● quantification



Text classification
The simplest text classification (TC) problem is the one of binary classification:

Given a document d and a class c, determine if d ∈ c or d ∈ ¬c.

● d consists of a piece of text, usually with limited, if any, structure 
information (e.g., title, sections, hyperlinks, typographic styles).

● c is a symbolic label that denotes a shared characteristic among the 
documents that have that label assigned.

● ¬c is the complement of c, i.e., the set of all documents that do not have 
the characteristic denoted by c.



Text classification
Example: determine if these documents belongs to the class c =Computing: 

d1 = 'Django is a free and open source web application framework, 

written in Python, which follows the model/view/controller (MVC) 

architectural pattern.'

d2 = 'Python is a widely used general-purpose, high-level 

programming language.'

d3 = 'Django is a 1966 Italian Spaghetti Western film directed by 

Sergio Corbucci and starring Franco Nero in the eponymous role.' 

d4 = 'Monty Python and the Holy Grail is a 1975 British comedy 

film written and performed by the comedy group of Monty Python'



Historical notes
Before the affirmation of machine learning-based TC, TC was a Knowledge 
Engineering problem, in which a domain expert manually defined a set of rules 
to assign documents to classes. 

if('open source'∈ d or 'programming language'∈ d) 

then c 

else ¬c 

This process requires a domain expert thas is also expert in rules formulation.

Rules easily grow out of control for complex domains and large inputs. 

'Big Buck Bunny is an open source movie from the Peach Open Movie 

Project.'

https://arxiv.org/pdf/cs/0110053.pdf
https://en.wikipedia.org/wiki/List_of_open-source_films


Supervised learning for classification 
Given a document domain D and a class c, the classification problem is 
represented by a - mostly unknown - classification function

 Yc ∶ D → −1,+1 

The learning algorithm learns an approximated classification function (also 
called model) 

Ỹc ∶ D → −1,+1 

by observing a set of known classification cases (training set), i.e., documents 
for which the true classification label (Yc(d)) is known. 



The pipeline

● (Indexing - 1) Labeled documents (training set) are processed by means of 
NLP and IR techniques to create a vectorial representation of its content. 

● (Training - 2) Vectors and labels are fed to a machine learning algorithm 
that learns a model of the classification problem. 



The pipeline

● (Indexing - 3) Unlabeled documents are processed in order to create 
vectorial representations that are consistent with those created from the 
training set. 

● (Classification - 4) The classification model is applied to the test set, 
labeling its documents.



The pipeline

Note that the Indexing step 1, not only transforms text, but also defines ("fits") 
the transformation function (e.g., feature space, idf values).

That exact transformation function is then used in Indexing step 3.



ML algorithms
Most* machine learning algorithm cannot take plain text as input. 

They require the text to be converted into a machine processable format:

● a set of items, 

● a probability distribution,

● a vector of real values, depending on the algorithm type,

depending of the type of model the algorithm is designed to fit.

* for example, Neural Networks can actually perform better** when 
processing text as a sequence of characters
** A LOT of text is required to make it work.



Learning
The learning algorithm observes 
the labeled examples and 
determines from them the 
parameters of a classification 
model. 

The classification model is 
configured in order to achieve the 
best separation between positive 
(d ∈ c) and negative (d ∈ ¬c) 
examples.



Probabilistic: Naïve Bayes
Naïve Bayes is a probabilistic learner that uses the Bayes Theorem: 

making a strong independence assumption between the features. 

It is fast, but it has a strong bias and is usually suboptimal on text, since 
words are often correlated (N-grams models partially counter this problem).

http://blog.aylien.com/naive-bayes-for-dummies-a-simple-explanation/


Naïve Bayes: log space
The multiplication of many (very) small probability values may lead to 
underflow errors.

Usually the models use the logs of the probabilities to work in a linear space:

log(𝛱i P(wi)) = 𝛴i log(P(wi))

The classifier is thus formulated as:

NB(d)=arg maxj log(P(cj))+𝛴wi∊d log(P(wi|cj))

Where P(cj) and log(P(wi|cj) are precomputed on train data (plus smoothing 
for unknown words).

https://en.wikipedia.org/wiki/Arithmetic_underflow


Decision Trees
A Decision Tree (DT) generates a tree whose nodes 
are yes/no question on features.

DTs pick as nodes the most informative features 
(considering parent nodes), using information theory 
measures, e.g., those used for feature selection. 
In fact, DTs implicitly perform a feature selection.

DT are prone to overfitting.

Random Forest learns a committee of decision 
trees, each one trained on a randomized 
sample of the training set. 



SVM
Linear Support Vector Machine 
(SVM) uses a model of the form: 

w ⋅ x − b = 0 

to determine the hyperplane that 
better separates the examples. 

Cannot work on non-linearly 
separable problems. 

Usually works fine with text 
(high-dimensional, sparse). 



SVM
SVMs use kernels 
to project data in transformed spaces 
so as to learn more complex models.

● Polynomial : 

● Radial basis function: 

● Sigmoid: 

Must avoid overfitting . 

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
https://www.youtube.com/watch?v=3liCbRZPrZA
https://cs.stanford.edu/people/karpathy/svmjs/demo/


Binary vs Multi-class
When the classification labels are n=2 we face a binary classification problem.

When the classification labels are n>2, we face a multi-class classification 
problem, which can be further defined as:

● multi-class multi-label: a document can be assigned to any number of 
labels l, i.e., 0⩽l⩽n. 

● multi-class single-label: a document must be assigned to one and only 
one label.



Multi-class
Multi-class multi-label classifiers are typically trained learning n independent 
binary classifiers.

There are two main methods to train a multi-class single-label classifier:

One-vs-one (OvO): 

● for every possible pair of classes cj,ci a binary classifier is trained on the 
subset of positive example for those two classes

● the classification is done by applying all the pair-wise classifiers and 
assigning the labels that "wins" more classifications.

https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/


Multi-class
There are two main methods to train a multi-class single-label classifier:

One-vs-rest (alias One-vs-all, OvR, OvA): 

● for every class ci a binary classifier is trained using as the positive 
examples those belonging to ci and as the negative examples those 
belonging to any other class

● the classification is done by applying all the classifiers and assigning the 
labels that obtains the highest scores (arg max).

One-vs-rest requires to train less classifiers, and it is usually preferred.

https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/


Explainability
"A decision tree model can be inspected and explained by a human, 

while an SVM model cannot be inspected and explained."

NOT TRUE

None of the two algorithms is designed for inspection and explainability.

On some problems (e.g., those with few features on "everyday" scales) DT 
models can expose in clear way how the features contribute to decisions.

Some SVM kernels (special those that perform best on low-dimensional, dense 
data, e.g., RBF) transform the vector space in a way that the model weights are 
difficult to correlate to output.



Explainability
Textual data produces many, many features, 
DT can become quite branched and deep.

A path to a decision may be long, upper 
nodes may lead to many different decisions.

Values of features are on unusual scales, not 
linked to human perception (e.g., tf-idf).

tf-idf('my name')>0.032

DT Forests have a lot of trees, how each of 
them contributes to the final answer?

Decision tree for detection of Italian 
native speakers writing in English:



Explainability
Data is usually sparse, so a linear kernel can be successfully used.

Weights of linear kernels are easy to understand in terms of positive/negative 
correlation (and its strength) of the feature with respect to the output.

E.g., SVM weights of trigram features for detection of Italian native speakers writing in English: 

I_think_that:  2.89 a_lot_of:  2.27
agree_with_the: 1.81 I_'_m:  1.62
In_my_opinion:  1.53 ._In_fact:  1.02

._However_,: -0.56 ,_however_,: -0.52

._Also_,: -0.52 should_not_be: -0.45

._He_is: -0.37 as_well_as: -0.35



Evaluation



Contingency table
The learned classifier Ŷ is applied to unlabeled documents. 

Labels are in fact known, but kept hidden to the classifier (test set).

Predicted labels are compared to true labels from test set, building a 
contingency table:



Contingency table
Predicted labels are compared to true labels from test set, building a 
contingency table:

● TP = true positive, document correctly labeled with the category label 
● FP = false positive, document wrongly labeled with the category label 
● FN = false negative, document wrongly not labeled with the category label 
● TN = true negative, document correctly not labeled with the category label 



Accuracy

Various measures can be used to evaluate the classifier: 

● Accuracy

Accuracy is not fair on unbalanced sets: if only 1% of test documents belong 
to the category, then saying always “no” yields a 99% accuracy.



Precision & Recall

● Recall, ability to find positive items

● Precision, accuracy on positive labels

100% Recall can be achieved by saying always "yes".

● In that case precision will be P/(P+N).



F1
By combining precision and recall we can obtain a 
measure that cannot be cheated using trivial classifiers:

● F1 is the harmonic mean of precision and recall

Evaluation in SciKit-Learn

Arithmetic mean

Harmonic mean

https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation


Confusion table
In multi-class single-label classification problem we 
can compute a confusion table, which show the 
counts of how many documents belonging to a class 
ci (true label) have been assigned to a class cj 
(predicted label).

Cells in a confusion table may reports raw counts 
(highlighting more populated classes) or 
row-normalized values (giving to every class equal 
importance).

https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html


Micro- and macro-averaging
Evaluation of multi-class multi-label problems is carried out by evaluating the 
binary classifier for each class.

For each class a contingency table Ti is computed.

Two evaluation models:

● micro-averaged: cells of all Ti tables are summed up in a single T table, 
then evaluation measures are applied to it. Classes with more positive 
cases weight more in the final result.

● macro-averaged: evaluation measures ei are computed distinctly on each 
Ti, then the final e values are computed as the average of all ei values. This 
gives equal weight to all classes.



Scikit-learn



Scikit-learn
Scikit-learn is a Python package that implements a rich amount of machine 
learning methods and tools (except complex neural networks).

It implements the concept of the processing pipeline through a shared 
interface for all of its components: tokenization, weighting, selection, learning, 
prediction.

pipeline = Pipeline([

    ('vect', CountVectorizer()),  # feature extraction

    ('sel', SelectKBest(chi2, k=5000)),  # feature selection

    ('weight', TfidfTransformer()),  # weighting

    ('learner', LinearSVC())  # learning algorithm

])

http://scikit-learn.org/

