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Bivariate dataset

® Consider a bivariate dataset
(X17y1)7 M (Xna.yn)

® |t can be visualized in a scatter plot
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® This suggests a relation Hardness = « + - Density + random fluctuation
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Simple linear regression model

SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression

model for a bivariate dataset (v1,91).(x2,92).- -, (Tn.Yn), We as-
sume that x1,2s,...,2, are nonrandom and that yi,ys,...,y, are
realizations of random variables Y1, Ys, ..., Y, satisfying

Yi=a+px;+U; fori=1,2,...,n,

where U, ..., U, are independent random variables with E[U;] = 0

and Var(U;) = 2.

Regression line: y = o + 8x with intercept o and slope 3
x is called the explanatory (or independent) variable, and y the response (or dependent)

Independence of Uy, ..., U, implies independence of Yy,...,Y,
» But Y;'s are not identically distributes, as E[Y;] = a + x;

Also, notice Var(Y;) = Var(U;) = o2

[homoscedasticity]
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Estimation of parameters

® How to estimate v and 57 MLE requires to know the distribution of the U;'s

The point (zi,y:) ~ T " The regression
.

liney=azx=p

T T 1
@

® vy, — « — [Bx; is called a residual, and it is a realization of U;
» recall that E[U;] = 0 and Var(U;) = E[U?] = o2
® The method of Least Squares prescribe to minimize the sum of squares of residuals:

n

daB = argmina,ﬁs(av B) where S(Qa B) = Z(yl - — Bxi)2
i=1
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Least Squares Estimates

® Partial derivatives:
d & d ‘

ES(a,ﬂ) ==Y 2(yi—a—pBx) —S(a, B) = =) 2(yi —a— Bx;)x;

® Equal to 0 for:

n n n n n
na+ﬂZx,—Zy, OéZXiJrﬁZX,z:ZX:%
i=1 i=1 i=1 i=1 i=1
® and solving, we get:
&=y, — é)_(n B _ nZLl Xi¥i — (Z?:l Xf)(Z?:l }/i)

n 27:1 Xi2 - (27=1 x;)?
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Least Squares Estimates

&=y, — B)_( /3 _ ”27:1 Xiyi — (27:1 Xi)(Z?:l yf)
! ! ny g xF = (2 xi)?

e Equivalent form of /3 [prove it!]

B 221 (% — Xa)(yi — V) r Sy

SXX T s

where:
> SXX = S0 (x — %)
> (xi—x)(vi—y)
\/Zle(xr'*?)zz,-":l(yiﬂ'/)z

S \/ﬁ S (xi — X,)? is the sample standard deviations of x;s

>y = is the Pearson’s correlation coefficient

> 5, = \/ﬁ S0, (vi — ¥a)? is the sample standard deviations of y;'s

e The line y = & + (3x always passes through the center of gravity (Xn, ¥n)
» Since & = y, — (%, we have & + 3%, = ¥ — A%y + ARy = Vi
See R script
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Why 'regression’ ?

So, why is it called ’'regression’ anyway?
: o,
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® “Galton concluded that as heights of the parents deviated from the average height, [...]

the heights of the children regressed to the average height of an adult.”
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N

Unbiasedness of estimators:

® (Consider the least square estimators:

&= Y — B § = 2106 = %)(Yi = Vi)

SXX
where SXX = 37(x; — X,)2. Since 3.7(x; — X,) = 0,we can rewrite 3 as:

B _ ZT(XI' — )_(n)Y, — ET(XI' - )?n)\_/n _ ET(XI - )_<n)Yl (1)
SXX SXX

® We have:
El3] = 210 — %) BV _ 20006 = %) at Bxi) _ U106 —Sa)xi _ g
SXX SXX SXX

where the last step follows since Y "7(xj — Xn)xi = Y7 (Xi — Xn)xi — > 1(xi — Xn)Xx = SXX.

® Moreover:
So1(xi — Xn)?Var(Yi) 52 Silxi —%n)? o2
SXX2 N SXX2  SXX

Var(B) =
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Unbiasedness of estimators: &

® (Consider the least square estimators:

5 ila—%)(Yi— V)

&= Yo = B SXX
® \We have:
_ A 1
Ela - EYn__nE = - EYi__n
A = EV - %= 30 Elv] -5
1« _ _ _
= D (a+Bx) —FB = a+ T — T =0
i=1
® Moreover:

Var(&) = Var(Yy — %) = Var(Vy) + X2 Var(B) — 25 Cov(Ya, ) = 0*( + 55)

where Cov(Y,,3) =0 [prove it!]
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An estimator for 02, and standard errors

* Var(&) and Var(j) use o2, which is unknown
® An unbiased estimate of o2 is:

n

R 1 N
5% = E (vi — & — Bx;)?
1

n—2

& is called the residual standard error

® The standard errors of the coefficient estimators are defined as the estimates of the
standard deviations:

1 X2

Z 4+ n )

n  SXX

se(&) = 64/ (
See R script
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LSE: Relation with MLE

Yi=a+ 8x+ U;

® In case U; ~ N(0,02), we have Y; ~ N(a + Bx;,0?)
® | og-likelihood is

1(yi—a—Bx

o, 8) = Y0y log (e (7o) ) = “nlog (0v2R) — 5 Y0 — o — Bx)?

® |t turns out that max, g (a, B) = &, Ié [same estimators as LSE]
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Residuals and R?

® Residual standard error vs Root Mean Squared Error (RMSE):

n n

1 A 1 A
2i—a=px)P  RMSE= =3 (yi—da-—Bx)

n—2
1 1

Q>
Il

both measure the variability we cannot explain with the regression model
e Compare 52 to the variability of data:

. 1 < _
6y =——5> (vi— )
1

n—1

through the adjusted R?:

(o}
N

adjR> =1 —

>

<N

all variability explained)

—

® adjR? ranges from 0 (no variability explained) to 1
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Residuals and R?

® When taking un-adjusted variances::
n

. 1 SR R 1 _
52 == (yi—a—Bxi)’ 7= i)
1

n
1

we define the coefficient of determination R?:

A2

2 g
RE=1-
y
See R script

13/13



