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Moments

• Let X be a continuous random variable with density function f (x)
• kth moment of X , if it exists, is:

E [X k ] =

∫ ∞
−∞

xk f (x)dx

• µ = E [X ] is the first moment of X

• kth central moment of X is:

µk = E [(X − µ)k ] =

∫ ∞
−∞

(x − µ)k f (x)dx

• σ =
√
E [(X − µ)k ] standard deviation is the square root of the second central moment

• kth standardized moment of X is:

µ̃k =
µk
σk

= E

[
(
X − µ
σ

)k
]
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Skewness

• µ̃1 = E [(X−µ)]/σ = 0 since E [X − µ] = 0

• µ̃2 = E [(X−µ)2]/σ2 = 1 since σ2 = E [(X − µ)2]

• µ̃3 = E [(X−µ)3]/σ3 [(Pearson’s moment) coefficient of skewness]

• Skewness indicates direction and magnitude of a distribution’s deviation from symmetry

• E.g., for X ∼ Exp(λ), µ̃3 = 2 Prove it!
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Kurtosis

• µ̃4 = E [(X−µσ )4] [(Pearson’s moment) coefficient of kurtosis]
• For X ∼ N(µ, σ), µ̃4 = 3 µ̃4 − 3 is called kurtosis in excess

• Kurtosis is a measure of the dispersion of X around the two values µ± σ

• µ̃4 > 3 Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
• µ̃4 < 3 Platykurtic (broad) distribution has thinner tails

See R script
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Joint distributions

• Random variables related to the same experiment often influence one another

• Ω = {(i , j) | i , j ∈ 1, . . . , 6} rolls of two dies

• X = sum(i , j) and Y = max(i , j)

• P(X = 4,Y = 3) = P({X = 4} ∩ {Y = 3}) = P({(3, 1), (1, 3)}) = 2/36
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Joint and marginal p.m.f.

• In general:

PXY (X = a,Y = b) = P({ω ∈ Ω |X (ω) = a and Y (ω) = b})

• The marginal p.m.f.’s can be derived from the joint p.m.f. as:

pX (a) = PX (X = a) =
∑
b

PXY (X = a,Y = b)

pY (b) = PY (Y = b) =
∑
a

PXY (X = a,Y = b)

See R script
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Joint and marginal CDF

• In general: PXY (X ≤ a,Y ≤ b) = P({ω ∈ Ω |X (ω) ≤ a and Y (ω) ≤ b})

• The marginal distribution functions of X and Y are:

FX (a) = PX (X ≤ a) = FXY (a,∞) = lim
b→∞

F (a, b)

FY (b) = PY (Y ≤ b) = FXY (∞, b) = lim
a→∞

F (a, b)

• But given FX () and FY () we cannot reconstruct FXY ()!

See R script
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Joint distributions: continuous random variables

• The marginal density functions of X and Y are:

fX (x) =

∫ ∞
−∞

f (x , y)dy fY (y) =

∫ ∞
−∞

f (x , y)dx

• Moreover, as in the univariate case:

F (a, b) =

∫ a

−∞

∫ b

−∞
f (x , y)dxdy f (x , y) =

d

dx

d

dy
F (x , y) =

d2

dxdy
F (x , y)

See R script
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Independence of two random variables

• Conditional probability:

P(X ≤ a|Y ≤ b) =
P(X ≤ a,Y ≤ b)

P(Y ≤ b)

• Independence
P(X ≤ a|Y ≤ b) = P(X ≤ a)

or, equivalently:

P(X ≤ a,Y ≤ b) = P(X ≤ a) · P(Y ≤ b) FXY (a, b) = FX (a) · FY (b)

or, for discrete/continuous random variables, equivalently:

p(a, b) = p(a) · p(b) fXY (x , y) = fX (x) · fY (y)
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Functions of random variables

• V = πHR2 be the volume of a vase of height H and radius R
• g(H,R) = πHR2 is a random variable (function of random variables)
• PV (V = 3) = Pg (g(H,R) = 3) = P({ω ∈ Ω | g(H(ω),R(ω)) = 3})

• How to calculate E [V ]?

E [V ] = E [πHR2] =

∫ ∞
−∞

∫ ∞
−∞

πhr2fH(h)fR(r)dhdr
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Linearity of expectations

E [rX + Ys + t] = rE [X ] + sE [Y ] + t

Proof. (discrete case)

E [rX + Ys + t] =
∑
a

∑
b

(ra + sb + t)P(X = a,Y = b)

=

(
r
∑
a

∑
b

aP(X = a,Y = b)

)
+

(
s
∑
a

∑
b

bP(X = a,Y = b)

)
+

(
t
∑
a

∑
b

P(X = a,Y = b)

)

=

(
r
∑
a

aP(X = a)

)
+

(
s
∑
b

bP(Y = b)

)
+ t = rE [X ] + sE [Y ] + t

• If X and Y are independent, E [XY ] = E [X ]E [Y ] Prove it!
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Applications

• Expectation of some discrete distributions
I X ∼ Ber(p) E [X ] = p
I X ∼ Bin(n, p) E [X ] = n · p

� Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Ber(p)

I X ∼ Geo(p) E [X ] = 1
p

I X ∼ NBin(n, p) E [X ] = n·p
1−p

� Because X =
∑n

i=1 Xi − n for X1, . . . ,Xn ∼ Geo(p)

• Expectation of some continuous distributions
I X ∼ Exp(λ) E [X ] = 1/λ
I X ∼ Gam(n, λ) E [X ] = n

λ
� Because X =

∑n
i=1 Xi for X1, . . . ,Xn ∼ Exp(λ)
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Covariance

Var(X + Y ) = E [(X + Y − E [X + Y ])2] = E [((X − E [X ]) + (Y − E [Y ]))2]

= E [(X − E [X ])2] + E [(Y − E [Y ])2] + 2E [(X − E [X ])(Y − E [Y ])]

= Var(X ) + Var(Y ) + 2Cov(X ,Y )
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Covariance

• Theorem Cov(X ,Y ) = E [XY ]− E [X ]E [Y ] Prove it!
I If X and Y are independent, Cov(X ,Y ) = 0 and Var(X + Y ) = Var(X ) + Var(Y )
I But there are X and Y uncorrelated (ie., Cov(X ,Y ) = 0) that are dependent!

• Variances of some discrete distributions
I X ∼ Ber(p) Var(X ) = p(1− p)
I X ∼ Bin(n, p) Var(X ) = np(1− p)

� Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Ber(p) and independent

I X ∼ Geo(p) Var(X ) = 1−p
p2

I X ∼ NBin(n, p) Var(X ) = n 1−p
p2

� Because X =
∑n

i=1 Xi − n for X1, . . . ,Xn ∼ Geo(p) and independent

• Variances of some continuous distributions
I X ∼ Exp(λ) Var(X ) = 1/λ2

I X ∼ Gam(n, λ) Var(X ) = n
λ2

� Because X =
∑n
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Covariance and correlation coefficient

• Covariance depends on the units of measure!

• Correlation coefficient is dimensionless (not affected by change of units)
I E.g., if X and Y are in Km, then Cov(X ,Y ), Var(X ) and Var(Y ) are in Km2

−1 ≤ ρ(X ,Y ) ≤ 1
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Sum of independent random variables

• For X ∼ FX and Y ∼ FY , let Z = X + Y . We know

E [Z ] = E [X ] + E [Y ] Var(Z ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

• What is the distribution function of Z (when X and Y are independent)?

• Examples:
I For X ∼ Bin(n, p) and Y ∼ Bin(m, p), Z ∼ Bin(n + m, p)
I For X ∼ Geo(p) (days radio 1 breaks) and Y ∼ Geo(p) (days radio 2 breaks):

pZ (X + Y = k) =
k−1∑
l=1

pX (l) · pY (k − l) = (k − 1)p2(1− p)k−2
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Sum of independent random variables

• The integral is called the convolution of fX () and fY ()

• X ,Y ∼ Exp(λ), Z = X + Y , X ,Y ,Z ≥ 0 implies 0 ≤ Y ≤ Z

fZ (z) =

∫ ∞
−∞

λe−λ(z−y)λe−λydy = λ2e−λz
∫ z

0
1dy = λ2e−λzz

• Z = X1 + . . .+ Xn for Xi ∼ Exp(λ) independent: [Earlang Erl(n, λ) distribution]

fZ (z) =
λ(λz)n−1e−λz

(n − 1)!
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Gam(α, λ)

• Let λ be some average rate of an event, e.g., λ = 1/10 number of buses in a minute

• The waiting times to see an event is Exponentially distributed. E.g., probability of waiting
x minutes to see one bus.

• The waiting times between n occurrences of an event are Erlang distributed. E.g.,
probability of waiting z minutes to see n buses.

• Extends Erl(n, λ) to α > 0 by Euler’s Γ(α)

See R script
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Common distributions

42 / 42


