Statistical Methods for Data Science Lesson 09 - Moments, joint distributions, sum of random variables

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Moments

- Let X be a continuous random variable with density function f(x)
- *k*th moment of *X*, if it exists, is:

$$E[X^k] = \int_{-\infty}^{\infty} x^k f(x) dx$$

• $\mu = E[X]$ is the first moment of X

Moments

- Let X be a continuous random variable with density function f(x)
- *k*th moment of *X*, if it exists, is:

$$E[X^k] = \int_{-\infty}^{\infty} x^k f(x) dx$$

- $\mu = E[X]$ is the first moment of X
- kth central moment of X is:

$$\mu_k = E[(X-\mu)^k] = \int_{-\infty}^{\infty} (x-\mu)^k f(x) dx$$

• $\sigma = \sqrt{E[(X - \mu)^k]}$ standard deviation is the square root of the second central moment

Moments

- Let X be a continuous random variable with density function f(x)
- *k*th moment of *X*, if it exists, is:

$$E[X^k] = \int_{-\infty}^{\infty} x^k f(x) dx$$

- $\mu = E[X]$ is the first moment of X
- *k*th central moment of X is:

$$\mu_k = E[(X-\mu)^k] = \int_{-\infty}^{\infty} (x-\mu)^k f(x) dx$$

σ = √E[(X - μ)^k] standard deviation is the square root of the second central moment
 kth standardized moment of X is:

$$\tilde{\mu}_k = \frac{\mu_k}{\sigma^k} = E\left[\left(\frac{X - \mu}{\sigma} \right)^k \right]$$

Skewness

•
$$\tilde{\mu}_1 = E[(X-\mu)]/\sigma = 0$$
 since $E[X-\mu] = 0$

•
$$\tilde{\mu}_2 = E[(X-\mu)^2]/\sigma^2 = 1$$
 since $\sigma^2 = E[(X-\mu)^2]$

• $\tilde{\mu}_3 = E[(X-\mu)^3]/\sigma^3$ [(Pearson's moment) coefficient of skewness]

Skewness

•
$$\tilde{\mu}_1 = E[(X-\mu)]/\sigma = 0$$
 since $E[X-\mu] = 0$

- $\tilde{\mu}_2 = E[(X-\mu)^2]/\sigma^2 = 1$ since $\sigma^2 = E[(X-\mu)^2]$
- $\tilde{\mu}_3 = E[(X-\mu)^3]/\sigma^3$ [(Pearson's moment) coefficient of skewness]
- Skewness indicates direction and magnitude of a distribution's deviation from symmetry

• E.g., for $X \sim Exp(\lambda)$, $\tilde{\mu}_3 = 2$

Kurtosis

- $\tilde{\mu}_4 = E[(\frac{X-\mu}{\sigma})^4]$
- For $X \sim N(\mu, \sigma)$, $\tilde{\mu}_4 = 3$

[(Pearson's moment) coefficient of kurtosis] $\tilde{\mu}_4 - 3$ is called kurtosis in excess

Kurtosis

- $\tilde{\mu}_4 = E[(\frac{X-\mu}{\sigma})^4]$
- For $X \sim \textit{N}(\mu,\sigma)$, $ilde{\mu}_4 = 3$
- Kurtosis is a measure of the dispersion of X around the two values $\mu\pm\sigma$

[(Pearson's moment) coefficient of kurtosis]

 $\tilde{\mu}_4 - 3$ is called kurtosis in excess

Kurtosis

- $\tilde{\mu}_4 = E[(\frac{X-\mu}{\sigma})^4]$
- For $X \sim N(\mu, \sigma)$, $\tilde{\mu}_4 = 3$
- Kurtosis is a measure of the dispersion of X around the two values $\mu\pm\sigma$

[(Pearson's moment) coefficient of kurtosis]

 $\tilde{\mu}_4 - 3$ is called kurtosis in excess

- $\tilde{\mu}_4 > 3$ Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
- $\tilde{\mu}_4 < 3$ Platykurtic (broad) distribution has thinner tails

See R script

Joint distributions

- Random variables related to the same experiment often influence one another
- $\Omega = \{(i,j) \mid i,j \in 1,\ldots,6\}$ rolls of two dies
- X = sum(i, j) and Y = max(i, j)
- $P(X = 4, Y = 3) = P({X = 4} \cap {Y = 3}) = P({(3,1), (1,3)}) = \frac{2}{36}$

Joint and marginal p.m.f.

• In general:

$$\mathcal{P}_{XY}(X=a,Y=b)=\mathcal{P}(\{\omega\in\Omega\;|X(\omega)=a\; ext{and}\;Y(\omega)=b\})$$

DEFINITION. The *joint probability mass function* p of two discrete random variables X and Y is the function $p : \mathbb{R}^2 \to [0, 1]$, defined by

$$p(a,b) = P(X = a, Y = b)$$
 for $-\infty < a, b < \infty$.

Joint and marginal p.m.f.

• In general:

$${\sf P}_{XY}(X={\sf a},Y={\sf b})={\sf P}(\{\omega\in\Omega\;|X(\omega)={\sf a}\;{\sf and}\;Y(\omega)={\sf b}\})$$

DEFINITION. The *joint probability mass function* p of two discrete random variables X and Y is the function $p : \mathbb{R}^2 \to [0, 1]$, defined by

$$p(a,b) = P(X = a, Y = b)$$
 for $-\infty < a, b < \infty$.

• The marginal p.m.f.'s can be derived from the joint p.m.f. as:

$$p_X(a) = P_X(X = a) = \sum_b P_{XY}(X = a, Y = b)$$
$$p_Y(b) = P_Y(Y = b) = \sum_a P_{XY}(X = a, Y = b)$$
See R script

Joint and marginal CDF

• In general: $P_{XY}(X \le a, Y \le b) = P(\{\omega \in \Omega \mid X(\omega) \le a \text{ and } Y(\omega) \le b\})$

DEFINITION. The *joint distribution function* F of two random variables X and Y is the function $F : \mathbb{R}^2 \to [0, 1]$ defined by

 $F(a,b) = P(X \le a, Y \le b) \quad \text{for } -\infty < a, b < \infty.$

Joint and marginal CDF

• In general: $P_{XY}(X \le a, Y \le b) = P(\{\omega \in \Omega \mid X(\omega) \le a \text{ and } Y(\omega) \le b\})$

DEFINITION. The *joint distribution function* F of two random variables X and Y is the function $F : \mathbb{R}^2 \to [0, 1]$ defined by

$$F(a,b) = P(X \le a, Y \le b) \quad \text{for } -\infty < a, b < \infty.$$

• The marginal distribution functions of X and Y are:

$$F_X(a) = P_X(X \le a) = F_{XY}(a, \infty) = \lim_{b \to \infty} F(a, b)$$

 $F_Y(b) = P_Y(Y \le b) = F_{XY}(\infty, b) = \lim_{a \to \infty} F(a, b)$

Joint and marginal CDF

• In general: $P_{XY}(X \le a, Y \le b) = P(\{\omega \in \Omega \mid X(\omega) \le a \text{ and } Y(\omega) \le b\})$

DEFINITION. The *joint distribution function* F of two random variables X and Y is the function $F : \mathbb{R}^2 \to [0, 1]$ defined by

$$F(a,b) = P(X \le a, Y \le b) \quad \text{for } -\infty < a, b < \infty.$$

• The marginal distribution functions of X and Y are:

$$F_X(a) = P_X(X \le a) = F_{XY}(a, \infty) = \lim_{b \to \infty} F(a, b)$$

$$F_Y(b) = P_Y(Y \le b) = F_{XY}(\infty, b) = \lim_{a \to \infty} F(a, b)$$

• But given $F_X()$ and $F_Y()$ we cannot reconstruct $F_{XY}()$!

See R script

Joint distributions: continuous random variables

DEFINITION. Random variables X and Y have a *joint continuous* distribution if for some function $f : \mathbb{R}^2 \to \mathbb{R}$ and for all numbers a_1, a_2 and b_1, b_2 with $a_1 \leq b_1$ and $a_2 \leq b_2$,

$$P(a_1 \le X \le b_1, a_2 \le Y \le b_2) = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

The function f has to satisfy $f(x,y) \ge 0$ for all x and y, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1$. We call f the *joint probability density function* of X and Y.

• The marginal density functions of X and Y are:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

Joint distributions: continuous random variables

DEFINITION. Random variables X and Y have a *joint continuous* distribution if for some function $f : \mathbb{R}^2 \to \mathbb{R}$ and for all numbers a_1, a_2 and b_1, b_2 with $a_1 \leq b_1$ and $a_2 \leq b_2$,

$$P(a_1 \le X \le b_1, a_2 \le Y \le b_2) = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

The function f has to satisfy $f(x,y) \ge 0$ for all x and y, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1$. We call f the *joint probability density function* of X and Y.

• The marginal density functions of X and Y are:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

• Moreover, as in the univariate case:

$$F(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) dx dy \qquad f(x,y) = \frac{d}{dx} \frac{d}{dy} F(x,y) = \frac{d^{2}}{dx dy} F(x,y)$$

See R script

Independence of two random variables

• Conditional probability:

$$P(X \leq a | Y \leq b) = rac{P(X \leq a, Y \leq b)}{P(Y \leq b)}$$

Independence of two random variables

• Conditional probability:

$$P(X \leq a | Y \leq b) = rac{P(X \leq a, Y \leq b)}{P(Y \leq b)}$$

• Independence

$$P(X \leq a | Y \leq b) = P(X \leq a)$$

or, equivalently:

$$P(X \le a, Y \le b) = P(X \le a) \cdot P(Y \le b)$$
 $F_{XY}(a, b) = F_X(a) \cdot F_Y(b)$

or, for discrete/continuous random variables, equivalently:

$$p(a,b) = p(a) \cdot p(b)$$
 $f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$

Functions of random variables

- $V = \pi H R^2$ be the volume of a vase of height H and radius R
- $g(H, R) = \pi H R^2$ is a random variable (function of random variables)

•
$$P_V(V=3) = P_g(g(H,R)=3) = P(\{\omega \in \Omega \mid g(H(\omega), R(\omega)) = 3\})$$

Functions of random variables

- $V = \pi H R^2$ be the volume of a vase of height H and radius R
- $g(H, R) = \pi H R^2$ is a random variable (function of random variables)
- $P_V(V=3) = P_g(g(H,R)=3) = P(\{\omega \in \Omega \mid g(H(\omega), R(\omega))=3\})$ • Here to coloridate $E[V]_2$
- How to calculate E[V]?

$$E[V] = E[\pi HR^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \pi hr^2 f_H(h) f_R(r) dh dr$$

TWO-DIMENSIONAL CHANGE-OF-VARIABLE FORMULA. Let X and Y be random variables, and let $g : \mathbb{R}^2 \to \mathbb{R}$ be a function. If X and Y are *discrete* random variables with values a_1, a_2, \ldots and b_1, b_2, \ldots , respectively, then

$$\operatorname{E}\left[g(X,Y)\right] = \sum_{i} \sum_{j} g(a_i, b_j) \operatorname{P}(X = a_i, Y = b_j).$$

If X and Y are *continuous* random variables with joint probability density function f, then

$$\mathbf{E}\left[g(X,Y)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

Linearity of expectations

$$E[rX + Ys + t] = rE[X] + sE[Y] + t$$

Proof. (discrete case)

$$E[rX + Ys + t] = \sum_{a} \sum_{b} (ra + sb + t)P(X = a, Y = b)$$

= $\left(r\sum_{a} \sum_{b} aP(X = a, Y = b)\right) + \left(s\sum_{a} \sum_{b} bP(X = a, Y = b)\right) + \left(t\sum_{a} \sum_{b} P(X = a, Y = b)\right)$
= $\left(r\sum_{a} aP(X = a)\right) + \left(s\sum_{b} bP(Y = b)\right) + t = rE[X] + sE[Y] + t$

• If X and Y are independent, E[XY] = E[X]E[Y]

Applications

- Expectation of some discrete distributions
 - $X \sim Ber(p)$ E[X] = p
 - ► $X \sim Bin(n, p)$ $E[X] = n \cdot p$ □ Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \dots, X_n \sim Ber(p)$
 - $X \sim Geo(p)$ $E[X] = \frac{1}{p}$
 - $X \sim NBin(n, p)$ $E[X]' = \frac{n \cdot p}{1-p}$
 - \Box Because $X = \sum_{i=1}^{n} X_i n$ for $X_1, \ldots, X_n \sim Geo(p)$

Applications

- Expectation of some discrete distributions
 - $X \sim Ber(p)$ E[X] = p
 - $X \sim Bin(n, p)$ $E[X] = n \cdot p$
 - \Box Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \ldots, X_n \sim Ber(p)$
 - $X \sim Geo(p)$ $E[X] = \frac{1}{p}$
 - $X \sim NBin(n, p)$ $E[X] = \frac{n \cdot p}{1-p}$
 - \Box Because $X = \sum_{i=1}^{n} X_i n$ for $X_1, \ldots, X_n \sim Geo(p)$
- Expectation of some continuous distributions
 - $X \sim Exp(\lambda)$ $E[X] = 1/\lambda$
 - $X \sim Gam(n, \lambda)$ $E[X] = \frac{n}{\lambda}$
 - \square Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \ldots, X_n \sim Exp(\lambda)$

$$Var(X + Y) = E[(X + Y - E[X + Y])^{2}] = E[((X - E[X]) + (Y - E[Y]))^{2}]$$

$$= E[(X - E[X])^{2}] + E[(Y - E[Y])^{2}] + 2E[(X - E[X])(Y - E[Y])]$$

$$=$$
 Var(X) + Var(Y) + 2Cov(X, Y)

$$Var(X + Y) = E[(X + Y - E[X + Y])^{2}] = E[((X - E[X]) + (Y - E[Y]))^{2}]$$

$$= E[(X - E[X])^{2}] + E[(Y - E[Y])^{2}] + 2E[(X - E[X])(Y - E[Y])]$$

$$=$$
 Var(X) + Var(Y) + 2Cov(X, Y)

Covariance

The covariance Cov(X, Y) of two random variables X and Y is the number:

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

=

$$Var(X + Y) = E[(X + Y - E[X + Y])^{2}] = E[((X - E[X]) + (Y - E[Y]))^{2}]$$
$$E[(X - E[X])^{2}] + E[(Y - E[Y])^{2}] + 2E[(X - E[X])(Y - E[Y])]$$

$$=$$
 Var(X) + Var(Y) + 2Cov(X, Y)

Covariance

The covariance Cov(X, Y) of two random variables X and Y is the number:

Cov(X, Y) = E[(X - E[X])(Y - E[Y])]

Uncorrelated Positively correlated Negatively correlated

• Theorem Cov(X, Y) = E[XY] - E[X]E[Y]

- If X and Y are independent, Cov(X, Y) = 0 and Var(X + Y) = Var(X) + Var(Y)
- But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!

• Theorem Cov(X, Y) = E[XY] - E[X]E[Y]

- If X and Y are independent, Cov(X, Y) = 0 and Var(X + Y) = Var(X) + Var(Y)
- But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!
- Variances of some discrete distributions

•
$$X \sim Ber(p)$$
 $Var(X) = p(1-p)$

•
$$X \sim Bin(n, p)$$
 $Var(X) = np(1-p)$

 \square Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \ldots, X_n \sim Ber(p)$ and independent

- $X \sim Geo(p)$ $Var(X) = \frac{1-p}{p^2}$
- $X \sim NBin(n, p)$ $Var(X) = n \frac{1-p}{p^2}$

 \square Because $X = \sum_{i=1}^n X_i - n$ for $X_1, \ldots, X_n \sim \textit{Geo}(p)$ and independent

• Theorem Cov(X, Y) = E[XY] - E[X]E[Y]

- If X and Y are independent, Cov(X, Y) = 0 and Var(X + Y) = Var(X) + Var(Y)
- But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!
- Variances of some discrete distributions

•
$$X \sim Ber(p)$$
 $Var(X) = p(1-p)$

•
$$X \sim Bin(n, p)$$
 $Var(X) = np(1-p)$

 \square Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \ldots, X_n \sim Ber(p)$ and independent

• $X \sim Geo(p)$ $Var(X) = \frac{1-p}{p^2}$

•
$$X \sim NBin(n, p)$$
 $Var(X) = n \frac{1-p}{p^2}$

 \square Because $X = \sum_{i=1}^{n} X_i - n$ for $X_1, \ldots, X_n \sim Geo(p)$ and independent

• Variances of some continuous distributions

•
$$X \sim Exp(\lambda)$$
 $Var(X) = 1/\lambda^2$

•
$$X \sim Gam(n, \lambda)$$
 $Var(X) = \frac{n}{\lambda^2}$

 \square Because $X = \sum_{i=1}^n X_i$ for $X_1, \ldots, X_n \sim \textit{Exp}(\lambda)$ and independent

Covariance and correlation coefficient

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two random variables. Then

```
\operatorname{Cov}(rX + s, tY + u) = rt\operatorname{Cov}(X, Y)
```

for all numbers r, s, t, and u.

Covariance and correlation coefficient

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two random variables. Then

```
\operatorname{Cov}(rX + s, tY + u) = rt\operatorname{Cov}(X, Y)
```

for all numbers r, s, t, and u.

• Covariance depends on the units of measure!

DEFINITION. Let X and Y be two random variables. The *correlation coefficient* $\rho(X, Y)$ is defined to be 0 if Var(X) = 0 or Var(Y) = 0, and otherwise Cov(X, Y)

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$$

Covariance and correlation coefficient

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two random variables. Then

```
\operatorname{Cov}(rX + s, tY + u) = rt\operatorname{Cov}(X, Y)
```

for all numbers r, s, t, and u.

Covariance depends on the units of measure!

DEFINITION. Let X and Y be two random variables. The correlation coefficient $\rho(X, Y)$ is defined to be 0 if $\operatorname{Var}(X) = 0$ or $\operatorname{Var}(Y) = 0$, and otherwise $\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$

- Correlation coefficient is *dimensionless* (not affected by change of units)
 - E.g., if X and Y are in Km, then Cov(X, Y), Var(X) and Var(Y) are in Km²

$$-1 \le
ho(X, Y) \le 1$$

• For $X \sim F_X$ and $Y \sim F_Y$, let Z = X + Y. We know

$$E[Z] = E[X] + E[Y] \qquad Var(Z) = Var(X) + Var(Y) + 2Cov(X, Y)$$

• What is the distribution function of Z (when X and Y are independent)?

• For $X \sim F_X$ and $Y \sim F_Y$, let Z = X + Y. We know

 $E[Z] = E[X] + E[Y] \qquad Var(Z) = Var(X) + Var(Y) + 2Cov(X, Y)$

- What is the distribution function of Z (when X and Y are independent)?
- Examples:
 - For $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$, $Z \sim Bin(n + m, p)$
 - For $X \sim Geo(p)$ (days radio 1 breaks) and $Y \sim Geo(p)$ (days radio 2 breaks):

$$p_Z(X + Y = k) = \sum_{l=1}^{k-1} p_X(l) \cdot p_Y(k-l) = (k-1)p^2(1-p)^{k-2}$$

• For $X \sim F_X$ and $Y \sim F_Y$, let Z = X + Y. We know

 $E[Z] = E[X] + E[Y] \qquad Var(Z) = Var(X) + Var(Y) + 2Cov(X, Y)$

- What is the distribution function of Z (when X and Y are independent)?
- Examples:
 - For $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$, $Z \sim Bin(n + m, p)$
 - For $X \sim Geo(p)$ (days radio 1 breaks) and $Y \sim Geo(p)$ (days radio 2 breaks):

$$p_Z(X + Y = k) = \sum_{l=1}^{k-1} p_X(l) \cdot p_Y(k-l) = (k-1)p^2(1-p)^{k-2}$$

ADDING TWO INDEPENDENT DISCRETE RANDOM VARIABLES. Let X and Y be two independent discrete random variables, with probability mass functions p_X and p_Y . Then the probability mass function p_Z of Z = X + Y satisfies

$$p_Z(c) = \sum_j p_X(c - b_j) p_Y(b_j)$$

where the sum runs over all possible values b_i of Y.

36 / 42

ADDING TWO INDEPENDENT CONTINUOUS RANDOM VARIABLES. Let X and Y be two independent continuous random variables, with probability density functions f_X and f_Y . Then the probability density function f_Z of Z = X + Y is given by

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) \, \mathrm{d}y$$
 for $-\infty < z < \infty$.

• The integral is called the **convolution** of $f_X()$ and $f_Y()$

for -

ADDING TWO INDEPENDENT CONTINUOUS RANDOM VARIABLES. Let X and Y be two independent continuous random variables, with probability density functions f_X and f_Y . Then the probability density function f_Z of Z = X + Y is given by

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) \, \mathrm{d}y$$
$$\infty < z < \infty.$$

- The integral is called the **convolution** of $f_X()$ and $f_Y()$
- $X, Y \sim Exp(\lambda), Z = X + Y, \quad X, Y, Z \ge 0 \text{ implies } 0 \le Y \le Z$

$$f_{Z}(z) = \int_{-\infty}^{\infty} \lambda e^{-\lambda(z-y)} \lambda e^{-\lambda y} dy = \lambda^{2} e^{-\lambda z} \int_{0}^{z} 1 dy = \lambda^{2} e^{-\lambda z} z$$

for

ADDING TWO INDEPENDENT CONTINUOUS RANDOM VARIABLES. Let X and Y be two independent continuous random variables, with probability density functions f_X and f_Y . Then the probability density function f_Z of Z = X + Y is given by

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) \, \mathrm{d}y$$

$$\infty < z < \infty.$$

- The integral is called the **convolution** of $f_X()$ and $f_Y()$
- $X, Y \sim Exp(\lambda), Z = X + Y, \quad X, Y, Z \ge 0 \text{ implies } 0 \le Y \le Z$

$$f_{Z}(z) = \int_{-\infty}^{\infty} \lambda e^{-\lambda(z-y)} \lambda e^{-\lambda y} dy = \lambda^{2} e^{-\lambda z} \int_{0}^{z} 1 dy = \lambda^{2} e^{-\lambda z} z$$

• $Z = X_1 + \ldots + X_n$ for $X_i \sim Exp(\lambda)$ independent:

[Earlang $Erl(n, \lambda)$ distribution]

$$f_Z(z) = \frac{\lambda(\lambda z)^{n-1} e^{-\lambda z}}{(n-1)!}$$

$Gam(\alpha, \lambda)$

- Let λ be some average rate of an event, e.g., $\lambda = 1/10$ number of buses in a minute
- The waiting times to see an event is Exponentially distributed. E.g., probability of waiting x minutes to see one bus.
- The waiting times between *n* occurrences of an event are Erlang distributed. E.g., probability of waiting *z* minutes to see *n* buses.

$Gam(\alpha, \lambda)$

- Let λ be some average rate of an event, e.g., $\lambda=1\!/\!10$ number of buses in a minute
- The waiting times to see an event is Exponentially distributed. E.g., probability of waiting x minutes to see one bus.
- The waiting times between *n* occurrences of an event are Erlang distributed. E.g., probability of waiting *z* minutes to see *n* buses.

DEFINITION. A continuous random variable X has a gamma distribution with parameters $\alpha > 0$ and $\lambda > 0$ if its probability density function f is given by f(x) = 0 for x < 0 and

$$f(x) = \frac{\lambda (\lambda x)^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}$$
 for $x \ge 0$,

where the quantity $\Gamma(\alpha)$ is a normalizing constant such that f integrates to 1. We denote this distribution by $Gam(\alpha, \lambda)$.

• Extends $Erl(n, \lambda)$ to $\alpha > 0$ by Euler's $\Gamma(\alpha)$

See R script

Common distributions

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).