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® Let X be a continuous random variable with density function f(x)
o k" moment of X, if it exists, is:

E[X¥] = /oo xKF(x)dx

® ;= E[X] is the first moment of X
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® Let X be a continuous random variable with density function f(x)
o k" moment of X, if it exists, is:

E[X¥] = /oo xKF(x)dx

® ;= E[X] is the first moment of X
e ki central moment of X is:
e = ELX =)= [ (e ) rix)ae
® o = /E[(X — p)k] standard deviation is the square root of the second central moment
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® Let X be a continuous random variable with density function f(x)
o k" moment of X, if it exists, is:

E[X¥] = /oo xKF(x)dx

® ;= E[X] is the first moment of X
o kth central moment of X is:
e = ELX =)= [ (e ) rix)ae

o = \/E[(X — )] standard deviation is the square root of the second central moment
kth standardized moment of X is:

A= {(X—M)k]

- ok o

4/42



® [iy = E[(X-m)l/o = 0 since E[X —pu] =0

= E[(X-1)’l/s? = 1 since 02 = E[(X — p)?]
® i3 = E[(X—ﬂ)3]/a3

[(Pearson’s moment) coefficient of skewness]
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® [iy = E[(X-m)l/o = 0 since E[X —pu] =0
® jip = El(X=1)?l/s? = 1 since 02 = E[(X — p)?]
® jiz = El[(X—p)*/o3 [(Pearson’s moment) coefficient of skewness]

® Skewness indicates direction and magnitude of a distribution’s deviation from symmetry

Mean
Median

Mode
|
Positive Symmetrical Negative
Skew Distribution Skew
e E.g., for X ~ Exp()), ji3 =2 Prove it!
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® jig=E [(%)4] [(Pearson’s moment) coefficient of kurtosis|
® For X ~ N(u,0), fia =3 fia — 3 is called kurtosis in excess
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® jig=E [(%)4] [(Pearson’s moment) coefficient of kurtosis|
® For X ~ N(u,0), fia =3 fia — 3 is called kurtosis in excess
® Kurtosis is a measure of the dispersion of X around the two values y + o
(+) Leptokurtic General
Forms of
(D) Mesokurtic Kurtosis
(Normal)

(- Platykurtic
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® jig=E [(%)4] [(Pearson’s moment) coefficient of kurtosis|
® For X ~ N(u,0), fia =3 fia — 3 is called kurtosis in excess
® Kurtosis is a measure of the dispersion of X around the two values y + o
(+) Leptokurtic General
Forms of
(D) Mesokurtic Kurtosis
(Normal)

(- Platykurtic

® jig > 3 Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
® [ig < 3 Platykurtic (broad) distribution has thinner tails
See R script
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Joint distributions

® Random variables related to the same experiment often influence one another
e Q={(i,j) | i,j€1,...,6} rolls of two dies

o X =sum(i,j) and Y = max(i,j)

e P(X=4Y=3)=P{X=4}n{Y =3})=P({(3,1),(1,3)}) = 2/36
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Joint and marginal p.m.f.

® |n general:
Pxy(X =a,Y =b)=P{w € Q |X(w) =aand Y(w) = b})

DEFINITION. The joint probability mass function p of two discrete
random variables X and Y is the function p : R — [0, 1], defined by

pla,b) =P(X =a,Y =0) for —c0<a,b< .
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Joint and marginal p.m.f.

® |n general:
Pxy(X =a,Y =b)=P{w € Q |X(w) =aand Y(w) = b})

DEFINITION. The joint probability mass function p of two discrete
random variables X and Y is the function p : R — [0, 1], defined by

pla,b) =P(X =a,Y =0) for —c0<a,b< .
® The marginal p.m.f.'s can be derived from the joint p.m.f. as:

px(a) = Px(X =a) =) Pxy(X=a,¥ = b)
b

py(b) =Py(Y =b)=> Pxy(X=a,Y =b)

See R script
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Joint and marginal CDF

® In general: Pxy(X <a,Y <b)=P{w e Q |X(w) <aand Y(w) < b})

DEFINITION. The joint distribution function F of two random vari-
ables X and Y is the function £ : R? — [0, 1] defined by

F(a,b) =P(X <a,Y <b) for —oo<a,b< oco.

13/42



Joint and marginal CDF

® In general: Pxy(X <a,Y <b)=P{w e Q |X(w) <aand Y(w) < b})

DEFINITION. The joint distribution function F of two random vari-
ables X and Y is the function £ : R? — [0, 1] defined by

F(a,b) =P(X <a,Y <b) for —oo<a,b< oco.

® The marginal distribution functions of X and Y are:

Fx(a) = Px(X < a) = Fxy(a,o0) = bIer;o F(a, b)

Fy(b) = Py(Y S b) = F)(y(OO7 b) = |im F(a, b)

a—o0
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Joint and marginal CDF

® In general: Pxy(X <a,Y <b)=P{w e Q |X(w) <aand Y(w) < b})

DEFINITION. The joint distribution function F of two random vari-
ables X and Y is the function £ : R? — [0, 1] defined by

F(a,b) =P(X <a,Y <b) for —oo<a,b< oco.
® The marginal distribution functions of X and Y are:

Fx(a) = Px(X < a) = Fxy(a,o0) = bIer;o F(a, b)

Fy(b) = Py(Y < b) = Fxy(c0,b) = lim F(a,b)

® But given Fx() and Fy() we cannot reconstruct Fxy()!
See R script
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Joint distributions: continuous random variables

DEFINITION. Random variables X and Y have a joint continuous
distribution if for some function f : R> — R and for all numbers
ay,as and by, by with a; < by and ay < bs,

by bo
ParsXshasysh = [ [ jwydeay

The function f has to satisfy f(z,y) > 0 for all 2 and y, and
[ 17 fley)dedy = 1. We call f the joint probability density
function of X and Y.

® The marginal density functions of X and Y are:

= [ s f= [ e

— 00 — 00

16 /42



Joint distributions: continuous random variables

DEFINITION. Random variables X and Y have a joint continuous
distribution if for some function f : R> — R and for all numbers
ay,as and by, by with a; < by and ay < bs,

by bo
ParsXshasysh = [ [ jwydeay

The function f has to satisfy f(z,y) > 0 for all 2 and y, and
[ 17 fley)dedy = 1. We call f the joint probability density
function of X and Y.

® The marginal density functions of X and Y are:
5= [ fendr w0 = [ e

® Moreover, as in the univariate case:
2

a b
d d
F(a, b) = /_oo /_Oo f(x, y)dxdy f(x,y) = &@F(X’y) = dxdyF(X,y)
See R script
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Independence of two random variables

® Conditional probability:

P(X <alY <b)=
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Independence of two random variables

® Conditional probability:
P(X <a, Y <b)

P(Y < b)

P(X <alY <b)=

® |ndependence
P(X <alY <b)=P(X <a)

or, equivalently:
P(X <a YL b) = P(X < a) . P(Y < b) ny(a, b) = Fx(a) . Fy(b)
or, for discrete/continuous random variables, equivalently:

p(a,b) = p(a) - p(b)  fxv(x,y) = fx(x) - fr(y)
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Functions of random variables

V = mHR? be the volume of a vase of height H and radius R
g(H,R) = mHR? is a random variable (function of random variables)
Py(V =3) = Pg(g(H,R) =3) = P({w € Q[ g(H(w), R(w)) = 3})
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Functions of random variables

V = mHR? be the volume of a vase of height H and radius R
g(H,R) = mHR? is a random variable (function of random variables)

Py(V =3) = Ps(g(H,R) = 3) = P({w € 2 [ g(H(w), R(w)) = 3})
How to calculate E[V]?

E[V] = E[rHR*] :/jo /jc mhr?fy(h)fr(r)dhdr

TWO-DIMENSIONAL CHANGE-OF-VARIABLE FORMULA. Let X and
Y be random variables, and let g : R> — R be a function.

If X and Y are discrete random variables with values aq,as,... and
b1, b, ..., respectively, then

Elg(X,Y)] = ZZ!J(GL’JJJ)P(X =a.,Y =b;).

If X and Y are continuous random variables with joint probability
density function f, then

Blgx.v) = [ - [ g, 1)l y) dzdy.
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Linearity of expectations

E[rX + Ys+t] = rE[X] + sE[Y] + t

Proof. (discrete case)

ElrX+Ys+t]=Y ) (ra+sb+t)P(X =a,Y = b)

= <r¥¥aP(X:a,Y: ) (sZZbP(X—a Y-b) (tZZP b))
- (rza:ap(x—a))+<52bp(v—b))+t—rE[X]+sE[Y]+t

b
O
e |f X and Y are independent, E[XY] = E[X]E[Y] Prove it!
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Applications

® Expectation of some discrete distributions
» X~ Ber(p) E[X]=p
» X ~ Bin(n,p) E[X]=n-p
O Because X =Y, X; for X1,..., X, ~ Ber(p)
» X ~ Geo(p) E[X]= %
» X ~ NBin(n,p) E[X]= {5
O Because X = > ", Xi — n for Xi,..., X, ~ Geo(p)
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Applications

® Expectation of some discrete distributions
» X~ Ber(p) E[X]=p
» X ~ Bin(n,p) E[X]=n-p
O Because X =Y, X; for X1,..., X, ~ Ber(p)
X~G E[X]=1%
. X /\/Zo'(p) | LlX o
» X ~ NBin(n, p) [ ]—ﬂ
O Because X = > ", Xi — n for Xi,..., X, ~ Geo(p)
® [Expectation of some continuous distributions
» X ~ Exp(\)  E[X]=1x
» X ~ Gam(n,)\) E[X]=2%
O Because X =Y 7, X; for Xi,..., X, ~ Exp(\)
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Covariance

Var(X + Y) = E[(X + Y — E[X + Y])?] = E[((X — E[X]) + (Y — E[Y]))}]
= E[(X — E[X])’1 + E[(Y — E[Y])’] +2E[(X — E[X])(Y — E[Y])]
= Var(X)+ Var(Y)+2Cov(X,Y)
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Covariance

Var(X + Y) = E[(X + Y — E[X + Y])?] = E[((X — E[X]) + (Y — E[Y]))}]
= E[(X — E[X])’1 + E[(Y — E[Y])’] +2E[(X — E[X])(Y — E[Y])]
= Var(X)+ Var(Y)+2Cov(X,Y)

Covariance

The covariance Cov(X,Y') of two random variables X and Y is the number:

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]
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Covariance

Var(X + Y) = E[(X + Y — E[X + Y])?] = E[((X — E[X]) + (Y — E[Y])}]
= E[(X — E[X])’] + E[(Y — E[Y])’] +2E[(X — E[X])(Y — E[Y])]
= Var(X)+ Var(Y)+2Cov(X,Y)

Covariance
The covariance Cov(X,Y') of two random variables X and Y is the number:

Cov(X,Y) = E[(X — EIX])(Y — E[Y])]

Uncorrelated Positively correlated Negatively correlated
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Covariance

® Theorem Cov(X,Y) = E[XY] — E[X]E[Y] Prove it!
» If X and Y are independent, Cov(X,Y) =0 and Var(X + Y) = Var(X) + Var(Y)
» But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!
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Covariance

® Theorem Cov(X,Y) = E[XY] — E[X]E[Y] Prove it!
» If X and Y are independent, Cov(X,Y) =0 and Var(X + Y) = Var(X) + Var(Y)
» But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!
® Variances of some discrete distributions
» X ~ Ber(p) Var(X)=p(1-p)
» X ~ Bin(n,p) Var(X) = np(1l - p)
O Because X =Y | X; for X1,..., X, ~ Ber(p) and independent
» X ~ Geo(p) Var(X)= 1;—2"
> X ~ NBin(n,p)  Var(X) = n:2
O Because X =Y , X; — n for Xy, ..., X, ~ Geo(p) and independent
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Covariance

® Theorem Cov(X,Y) = E[XY] — E[X]E[Y] Prove it!
» If X and Y are independent, Cov(X,Y) =0 and Var(X + Y) = Var(X) + Var(Y)
» But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!

® Variances of some discrete distributions
» X ~ Ber(p) Var(X)=p(1-p)
» X ~ Bin(n,p) Var(X) = np(1l - p)
O Because X =Y | X; for X1,..., X, ~ Ber(p) and independent
» X ~ Geo(p) Var(X)= 1;—2"
» X ~ NBin(n,p) Var(X)=
O Because X =Y , X; — n for Xy, ..., X, ~ Geo(p) and independent
® Variances of some continuous distributions
» X ~ Exp(A) Var(X) =1/
» X ~ Gam(n,\) Var(X)= 3z
O Because X =Y | X; for X1,..., X, ~ Exp(\) and independent

1-p
ni=zp
P2
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Covariance and correlation coefficient

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two
random variables. Then

Cov(rX + s,tY +u) = rt Cov(X,Y)

for all numbers r, s,t, and wu.
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Covariance and correlation coefficient

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two
random variables. Then

Cov(rX + s,tY +u) = rt Cov(X,Y)

for all numbers r, s,t, and wu.

® (Covariance depends on the units of measure!
DEFINITION. Let X and Y be two random variables. The correlation
coefficient p(X,Y) is defined to be 0 if Var(X) = 0 or Var(Y) = 0,

and otherwise
Cov(X,Y)

V/Var(X) Var(Y)

p(X,Y) =
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Covariance and correlation coefficient

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two
random variables. Then

Cov(rX + s,tY +u) = rt Cov(X,Y)

for all numbers r, s,t, and wu.

® (Covariance depends on the units of measure!

DEFINITION. Let X and Y be two random variables. The correlation
coefficient p(X,Y) is defined to be 0 if Var(X) = 0 or Var(Y) = 0,

and otherwise
Cov(X,Y)

V/Var(X) Var(Y)

e Correlation coefficient is dimensionless (not affected by change of units)
» E.g., if X and Y are in Km, then Cov(X,Y), Var(X) and Var(Y) are in Km?

-1<p(X,Y)<1

p(X,Y) =
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Sum of independent random variables

e For X ~Fxand Y ~ Fy, let Z=X+ Y. We know
E[Z] = E[X] + E[Y] Var(Z) = Var(X) + Var(Y) +2Cov(X,Y)

® What is the distribution function of Z (when X and Y are independent)?
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Sum of independent random variables

e For X ~Fxand Y ~ Fy, let Z=X+ Y. We know
E[Z] = E[X] + E[Y] Var(Z) = Var(X) + Var(Y) +2Cov(X,Y)

® What is the distribution function of Z (when X and Y are independent)?

® Examples:
» For X ~ Bin(n,p) and Y ~ Bin(m, p), Z ~ Bin(n+ m, p)
» For X ~ Geo(p) (days radio 1 breaks) and Y ~ Geo(p) (days radio 2 breaks):

pz(X+Y =k) = pr — 1) =(k=1)p*(1 - p)2
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Sum of independent random variables

® For X ~Fxand Y ~ Fy, let Z=X+ Y. We know
E[Z] = E[X] + E[Y] Var(Z) = Var(X) + Var(Y) +2Cov(X,Y)

® What is the distribution function of Z (when X and Y are independent)?

® Examples:
» For X ~ Bin(n,p) and Y ~ Bin(m, p), Z ~ Bin(n+ m, p)
» For X ~ Geo(p) (days radio 1 breaks) and Y ~ Geo(p) (days radio 2 breaks):

pz(X+Y =k) pr — )= (k- 1)p2(1 . p)k—z

ADDING TWO INDEPENDENT DISCRETE RANDOM VARIABLES. Let X
and Y be two independent discrete random variables, with probabil-
ity mass functions px and py. Then the probability mass function
pz of Z = X +Y satisfies

- pr(c — by)py (b)),

where the sum runs over all possible values b; of Y. 36 /42



Sum of independent random variables

ADDING TWO INDEPENDENT CONTINUOUS RANDOM VARIABLES.
Let X and Y be two independent continuous random variables, with
probability density functions fx and fy. Then the probability den-
sity function fz of Z = X + Y is given by
OO
122 = [ = nir @)
—0o0

for —oco < 2 < 0.

® The integral is called the convolution of fx() and fy()
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Sum of independent random variables

ADDING TWO INDEPENDENT CONTINUOUS RANDOM VARIABLES.
Let X and Y be two independent continuous random variables, with
probability density functions fx and fy. Then the probability den-
sity function fz of Z = X + Y is given by
OO
122 = [ = nir @)
—0o0

for —oco < 2 < 0.

® The integral is called the convolution of fx() and fy()
e X,Y ~Exp(A\), Z=X+Y, X,Y,Z>0implies0<Y <

fz(z) = / Ae AE N \e My = N2 / ldy = A\2e™
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Sum of independent random variables

ADDING TWO INDEPENDENT CONTINUOUS RANDOM VARIABLES.
Let X and Y be two independent continuous random variables, with
probability density functions fx and fy. Then the probability den-
sity function fz of Z = X + Y is given by

120 = [ IxG-prway
for —oo < 2 < o0.

® The integral is called the convolution of fx() and fy()
e X,Y ~Exp(A\), Z=X+Y, X,Y,Z>0implies0<Y <

fz(z) = / Ae AE N \e My = N2 / ldy = A\2e™

® Z=X1+...4+ X, for Xi ~ Exp()\) independent: [Earlang Erl(n, \) distribution]
)\()\Z)n—le—/\z

f2(2) = = i
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Gam(a, \)

® Let )\ be some average rate of an event, e.g., A = 1/10 number of buses in a minute

® The waiting times to see an event is Exponentially distributed. E.g., probability of waiting
X minutes to see one bus.

® The waiting times between n occurrences of an event are Erlang distributed. E.g.,
probability of waiting z minutes to see n buses.
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® Let \ be some average rate of an event, e.g., A = 1/10 number of buses in a minute

® The waiting times to see an event is Exponentially distributed. E.g., probability of waiting
X minutes to see one bus.

® The waiting times between n occurrences of an event are Erlang distributed. E.g.,
probability of waiting z minutes to see n buses.

DEFINITION. A continuous random variable X has a gamma dis-
tribution with parameters a > 0 and A > 0 if its probability density
function f is given by f(z) =0 for 2 < 0 and

()\I)G—l e

for x >0,
(@) orx >0,

fa) =2

where the quantity I'(a) is a normalizing constant such that f inte-
grates to 1. We denote this distribution by Gam (o, \).

® Extends Erl(n,\) to a > 0 by Euler's ['(«)
See R script
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N . . ‘Geometric Discrete
Common distributions -
min X, =X Negative Beta-binomial
binomial (n,a,B)
(n. p) _ Hypergeometric
I A\=n(1-p) Z+;‘_—*‘£ (M,N, K)
In—o -

“"p=M/N,n=K
New

Weibull Double
(. N exponential

among distributions. Solid lines represent transformations and special

cases, dashed lines represent limits. Adapted from Leemis (1986). 42 /42



