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Expectation of a discrete random variable

• Buy lottery ticket every week, p = 1/10000

X ∼ Geo(p) P(X = k) = (1− p)k−1 · p for k = 1, 2, . . .

• What is the average number of weeks to wait (expected) before winning?

E [X ] =
∞∑
k=1

k · (1− p)k−1 · p =
1

p

because
∑∞

k=1 k · xk−1 = 1/(1−x)2

• Expected value, mean value (weighted by probability of occurrence), center of gravity

Look at seeing-theory.brown.edu
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Expected value may be infinite!

• X with PMF p(2k) = 2−k for k = 1, 2, . . .

• p() is a PMF since
∑∞

k=1 2−k = 1 using
∑∞

k=0 = ak = 1
1−a for |a| < 1

• E [X ] =
∑∞

k=1 2k · 2−k =
∑∞

k=1 1 =∞

• X ∼ U(m,M) E [X ] = (m+M)/2

I
∑M

i=m
i

M−m+1 = . . .

• X ∼ Ber(p) E [X ] = p [The mean may not belong to the support!]
• X ∼ Bin(n, p) E [X ] = n · p

I Because . . . we’ll see later

• X ∼ NBin(n, p) E [X ] = n·p
1−p

I Because . . . we’ll see later

• X ∼ Poi(µ) E [X ] = µ
I Because, when n→∞: Bin(n, µ/n)→ Poi(µ)
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Expectation of a continuous random variable

• X ∼ U(α, β) E [X ] = (α + β)/2
• X ∼ Exp(λ) E [X ] = 1/λ

I Because
∫∞
0

xλe−λxdx =
[
−e−λx(x + 1/λ

]∞
0

= e0(0 + 1/λ)

• X ∼ N(µ, σ2) E [X ] = µ

I Because:
∫∞
−∞ x 1

σ
√
2π
e−

1
2 (

x−µ
σ )2dx = µ+

∫∞
−∞(x − µ) 1

σ
√
2π
e−

1
2 (

x−µ
σ )2dx =z= x−µ

σ

= µ+ σ
∫∞
−∞ z 1√

2π
e−

1
2 z

2

dz = µ
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Expected value may not exists!

• Cauchy distribution

f (x) =
1

π(1 + x2)

• X1,X2 ∼ N(0, 1) i.i.d., X = X1,X2 ∼ Cau(0, 1)

E [X ] =

∫ 0

−∞
xf (x)dx +

∫ ∞
0

xf (x)dx

•
∫ 0
−∞ xf (x)dx =

[
1
2π log(1 + x2)

]0
−∞ = −∞

•
∫∞
0 xf (x)dx =

[
1
2π log(1 + x2)

]∞
0

=∞

E [X ] = −∞+∞

Mean value does not always makes sense in your data analytics project!
See R script
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E [g(X )] 6= g(E [X ])

• Recall that velocity = space/time, and then time = space/velocity !

• Vector v of speed (Km/h) to reach school and their probabilities p using feet, bike, bus,
train:

v = c(5, 10, 20, 30) p = c(0.1, 0.4, 0.25, 0.25)

• Distance house-schools is 2 Km
• What is the average time to reach school?

I 2/sum(v*p)
I sum(2/v*p)

• X = velocity, g(X ) = 2/X time to reach school
I E [g(X )] 6= g(E [X ])
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The change of variable formula (or rule of the lazy statistician)

• X ∼ U(0, 10), width of a square field, E [X ] = 5
• g(X ) = X 2 is the area of the field, E [g(X )] = ? [E [g(X )] 6= g(E [X ])]
• Fg (a) = P(g(X ) ≤ a) = P(X ≤

√
a) =

√
a/10 for 0 ≤ a ≤ 100

• Hence, fg (a) = dFg (a)/da = 1/20
√
a

• E [g(X )] = 1
20

∫ 100

0
x√
x
dx = 1

20
2
3

[
x 3/2
]100
0

= 100/3

• Alternatively, E [g(X )] =
∫ 10

0
x2 1

10dx = 1
10

1
3

[
x3
]10
0

= 100/3

See R script
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Change of units

Theorem (Change of units)

E [rX + s] = rE [X ] + s

• Prove it!

• Corollary:
E [X − E [X ]] = E [X ]− E [X ] = 0
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Computation with random variables

Theorem

For a discrete random variable X , the p.m.f. of Y = g(X ) is:

PY (Y = y) =
∑

g(x)=y

PX (X = x) =
∑

x∈g−1(y)

PX (X = x)

• Proof. {Y = y} = {g(X ) = y} = {x ∈ g−1(u)}
• Corollary (the change-of-variable formula):

E [g(X )] =
∑
y

yPY (Y = y) =
∑
y

y
∑

g(x)=y

PX (X = x) =
∑
x

g(x)PX (X = x)
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Example

• X ∼ U(1, 200) number of tickets sold

• Capacity is 150

• Y = max{X − 150, 0} overbooked tickets

PY (Y = y) =

{
150/200 if y = 0 g−1(0) = {1, . . . , 150}
1/200 if 1 ≤ y ≤ 50 g−1(y) = {y + 150}

• Hence:

E [Y ] = 0 · 150

200
+

1

200
·

50∑
y=1

y = 6.375

• or using the change-of-variable formula:

E [Y ] =
1

200
·
200∑
x=1

max{X − 150, 0} =
1

200
·

200∑
x=151

(X − 150) = 6.375
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Computation with random variables

Theorem

For a continuous random variable X , the density functions of Y = g(X )
when g() is increasing/decreasing are:

FY (y) = FX (g−1(y)) fY (y) = fX (g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣
• Proof. (for g() increasing) Since g() is invertible and g(x) ≤ y iff x ≤ g−1(y):

FY (y) = PY (g(X ) ≤ y) = PX (X ≤ g−1(y)) = FX (g−1(y))

and then:

fY (y) =
dFY (y)

dy
=

dFX (g−1(y))

dy
=

dFX (g−1(y))

dg−1
dg−1(y)

dy
= fX (g−1(y))

dg−1(y)

dy

Show the case g() decreasing!
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Example

• X ∼ U(0, 1) radius fX (x) = 1 FX (x) = x for x ∈ [0, 1]

• Y = g(X ) = π · X 2 Support is [0, π]

• g(x) = πx2 is increasing, and g−1(y) =
√

y
π , and dg−1(y)

dy = 1
2
√
πy

FY (y) = FX (g−1(y)) =

√
y

π
fY (y) = fX (g−1(y))

dg−1(y)

dy
=

1

2
√
πy

Do not lift distributions from a data column
to a derived column in your data analytics project!

See R script

• Notice that: g(E [X ]) = π/4 ≤ E [g(X )] =
∫ 1
0 g(x)fX (x)dx =

∫ π
0 yfY (y)dy = π

3
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Jensen’s inequality

• f () is convex if f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2) for t ∈ [0, 1]

• if f ′′(x) ≥ 0 then f () is convex, e.g., g(x) = πx2 or g(x) = 1/x for x ≥ 0
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Change of units

• For X ∼ N(µ, σ2), how is Z = X
σ + −µ

σ = X−µ
σ distributed?

• fZ (z) = σfX (σy + µ) = 1√
2π
e−

1
2
y2

• Hence, Z ∼ N(0, 1)
• In particular, any probability for X can be expressed in terms of probability for Z :

P(X ≤ a) = P(Z ≤ a− µ
σ

) = Φ(
a− µ
σ

)
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Variance

• Investment A. P(X = 450) = 0.5 P(X = 550) = 0.5 E [X ] = 500

• Investment B. P(X = 0) = 0.5 P(X = 1000) = 0.5 E [X ] = 500

• Spread around the mean is important!

Variance and standard deviations

The variance Var(X ) of a random variable X is the
number:

Var(X ) = E [(X − E [X ])2]

σX =
√

Var(X ) is called the standard deviation of X .

• The standard deviation has the same dimension as E [X ] (and as X )

• Investment A. Var(X ) = 502 and σX = 50

• Investment B. Var(X ) = 5002 and σX = 500
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Variance

• It holds that:
Var [X ] = E [X 2]− E [X ]2

• E [X 2] is called the second moment of X
∫∞
−∞ x2f (x)dx

• Prove it!

Var(X ) = E [(X − E [X ])(X − E [X ])]

= E [X 2 + E [X ]2 − 2XE [X ]]

= E [X 2] + E [X ]2 − E [2XE [X ]]

= E [X 2] + E [X ]2 − 2E [X ]E [X ] = E [X 2]− E [X ]2

• Corollary:
Var [rX + s] = r2Var [X ]

• Prove it!

• Variance insensitive to shift s!
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Variance

• Variance may not exists!
I If expectation does does exists!
I Also in cases when expectation exists

� We’ll see later
• Variance of some discrete distributions

I X ∼ U(m,M) E [X ] = (m+M)
2 Var(X ) = (M−m+1)2−1

12
� use Var(X ) = Var(X −m), call n = M −m + 1 and

∑n−1
i=1 i2 = (n−1)n(2n−1)

6
I X ∼ Ber(p) E [X ] = p Var(X ) = p2(1− p) + (1− p)2p = p(1− p)
I X ∼ Bin(n, p) E [X ] = n · p Var(X ) = np(1− p)

� Because . . . we’ll see later
I X ∼ Geo(p) E [X ] = 1

p Var(X ) = 1−p
p2

� Hint: use Var(X ) = E [X 2]− E [X ]2 and
∑∞

k=1 k
2 · xk−1 = 1+x

(1−x)3

I X ∼ NBin(n, p) E [X ] = n·p
1−p Var(X ) = n 1−p

p2

� Because . . . we’ll see later
I X ∼ Poi(µ) E [X ] = µ Var(X ) = µ

� Because, when n→∞: Bin(n, µ/n)→ Poi(µ)

Look at seeing-theory.brown.edu
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Variance

• Variance of some continuous distributions
I X ∼ U(α, β) E [X ] = (α + β)/2 Var(X ) = (β − α)2/12

� Prove it! Recall that f (x) = 1/(β−α)

I X ∼ Exp(λ) E [X ] = 1/λ Var(X ) = 1/λ2

� Prove it! Recall that f (x) = λe−λx

I X ∼ N(µ, σ2) E [X ] = µ Var(X ) = σ2

� Prove it! Hint: use z = x−µ
σ

and integration by parts.
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