Lecture Notes

Statistics for Data Science University of Pisa, Italy

Salvatore Ruggieri

April 8, 2023

Contents

1	On Cramér-Rao's bound and MLE	2
2	Least Square Estimators in Simple Linear Regression	4
	2.1 Expectation	4
	2.2 Variance and Standard Errors of the Coefficients	4
	2.3 Variance-Covariance Matrix	5
	2.4 Variance and Standard Errors of Fitted Values	5
3	Confidence Intervals for Simple Linear Regression	6
	3.1 Confidence Intervals of the Coefficients	6
	3.2 Confidence and Prediction Intervals of the Fitted Values	6
	3.3 Hypothesis Testing	7
4	Statistical Decision Theory	8

On Cramér-Rao's bound and MLE 1

Consider the log-likelihood function:

$$\ell(\theta) = \sum_{i=1}^{n} \log f_{\theta}(X_i)$$

The MLE principle estimates the unknown parameter(s), given the observations, as the θ which maximizes $\ell(\theta)$. The log-likelihood takes its maximum at the zero's of its derivative, which is called the *score function*:

$$S(\theta) = \frac{\partial}{\partial \theta} \ell(\theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_{\theta}(X_i)$$

Such a function is relevant beyond the maximization problem. It describes how much a change in θ results into a change of the density, or, equivalently, how much much informative¹ are the observations in estimating a parameter θ .

Let us introduce the random variables $Y_i = \frac{\partial}{\partial \theta} \log f_{\theta}(X_i)$, for i = 1, ..., n. The score function can be written as $S(\theta) = \sum_{i=1}^{n} Y_i$. Since $X_1, ..., X_n$ are i.i.d., by the propagation of independence, this is also true for $Y_1 = \frac{\partial}{\partial \theta} \log f_{\theta}(X_1), ..., Y_n = \frac{\partial}{\partial \theta} \log f_{\theta}(X_n)$. The expectation of each Y_i 's is zero (use Leibniz integral rule):

$$\begin{split} \mathbf{E}[Y_i] &= \int (\frac{\partial}{\partial \theta} \log f_{\theta}(x)) f_{\theta}(x) dx = \int \frac{1}{f_{\theta}(x)} (\frac{\partial}{\partial \theta} f_{\theta}(x)) f_{\theta}(x) dx \\ &= \int \frac{\partial}{\partial \theta} f_{\theta}(x) dx = \frac{\partial}{\partial \theta} \int f_{\theta}(x) dx = \frac{\partial}{\partial \theta} \mathbf{1} = 0 \end{split}$$

Hence, by linearity of expectation, we have:

$$\mathbf{E}[S(\theta)] = \sum_{i=1}^{n} \mathbf{E}[Y_i] = 0$$

We resort then to the variance of $S(\theta)$ as a summary of the information provided by the random sample. The variance of $S(\theta)$ is called the *Fisher information*, and it is the quantity:

$$I(\theta) = Var(S(\theta)) = \mathbf{E} \left[S(\theta)^2 \right]$$

It turns out^{23} that:

$$I(\theta) = \mathbb{E}[S(\theta)^{2}] = \mathbb{E}[(\sum_{i=1}^{n} Y_{i})(\sum_{j=1}^{n} Y_{j})]$$

= $\mathbb{E}[\sum_{i=1}^{n} Y_{i}^{2} + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} Y_{i}Y_{j}]$
= $\mathbb{E}[\sum_{i=1}^{n} Y_{i}^{2}] + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \mathbb{E}[Y_{i}]\mathbb{E}[Y_{j}]$ (1)

¹Recall that information is measured as $-\log f_{\theta}(X)$, i.e., events with small probability bring more information.

- ²(1) follows since $\mathbf{E}\begin{bmatrix}Y_iY_j\end{bmatrix} = \mathbf{E}\begin{bmatrix}Y_i\end{bmatrix}\mathbf{E}\begin{bmatrix}Y_j\end{bmatrix}$ for independent Y_i, Y_j . ³(2) follows since $\mathbf{E}\begin{bmatrix}Y_i\end{bmatrix} = 0$.

$$= E\left[\sum_{i=1}^{n} Y_{i}^{2}\right] + 0$$
 (2)

$$= E\left[\sum_{i=1}^{n} \left(\frac{\partial}{\partial \theta} \log f_{\theta}(X_{i})\right)^{2}\right]$$
$$= nE\left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^{2}\right]$$
(3)

where $X \sim f_{\theta}$. **Important**: some textbooks define $I(\theta)$ using a single random variable, i.e., as $E\left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^{2}\right]$. In such cases, it must be multiplied by *n* whenever it is used. We can now link Fisher information to the Cramér-Rao inequality from [1, Remark 20.2]:

$$\operatorname{Var}(T) \ge \frac{1}{n \operatorname{E}\left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^{2}\right]}$$
 for all θ ,

by observing that, using (3), the right-hand side is the inverse of $I(\theta)$, i.e.:

$$\operatorname{Var}(T) \geq \frac{1}{n \operatorname{E}\left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^{2}\right]} = \frac{1}{I(\theta)} \quad \text{for all } \theta.$$

Example

The textbook [1, pages 324-325] shows that the unbiased MLE estimator of the mean μ of a normal distribution $N(\mu, \sigma^2)$ is $\bar{X}_n = (X_1 + \ldots + X_n)/n$. Let $X \sim \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$. The Fisher information is:

$$I(\theta) = n \mathbb{E} \left[\left(\frac{\partial}{\partial \mu} \log f_{\mu}(X) \right)^{2} \right]$$

$$= n \mathbb{E} \left[\left(\frac{X - \mu}{\sigma^{2}} \right)^{2} \right]$$

$$= \frac{n}{\sigma^{4}} \mathbb{E} \left[(X - \mu)^{2} \right]$$

$$= \frac{n}{\sigma^{4}} \operatorname{Var}(X) = \frac{n}{\sigma^{4}} \sigma^{2} = \frac{n}{\sigma^{2}} = \frac{1}{\operatorname{Var}(\bar{X}_{n})}$$

where the last equality follows because for i.i.d. random variables $\operatorname{Var}(\bar{X}_n) = \sigma^2/n$. By taking the reciprocals:

$$\operatorname{Var}(\bar{X}_n) = \frac{1}{I(\theta)}$$

we have that the lower bound of the Cramér-Rao inequality is reached, hence \bar{X}_n is a MVUE (Minimum Variance Unbiased Estimator).

Exercise

Show the following equivalent formulation:

$$I(\theta) = -n \mathbb{E} \Big[\frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} \log f_{\theta}(X) \Big]$$

2 Least Square Estimators in Simple Linear Regression

Consider the least square estimators:

$$\hat{\alpha} = \bar{Y}_n - \hat{\beta}\bar{x}_n \qquad \qquad \hat{\beta} = \frac{\sum_{i=1}^n (x_i - \bar{x}_n)(Y_i - \bar{Y}_n)}{SXX} \tag{4}$$

where $SXX = \sum_{1}^{n} (x_i - \bar{x}_n)^2$. Since $\sum_{1}^{n} (x_i - \bar{x}_n) = 0$, we can rewrite $\hat{\beta}$ as:

$$\hat{\beta} = \frac{\sum_{1}^{n} (x_i - \bar{x}_n) Y_i - \sum_{1}^{n} (x_i - \bar{x}_n) \bar{Y}_n}{SXX} = \frac{\sum_{1}^{n} (x_i - \bar{x}_n) Y_i}{SXX}$$
(5)

2.1 Expectation

 $\hat{\beta}$ is an unbiased estimator:

$$E[\hat{\beta}] = \frac{\sum_{1}^{n} (x_i - \bar{x}_n) E[Y_i]}{SXX}$$
$$= \frac{\sum_{1}^{n} (x_i - \bar{x}_n) (\alpha + \beta x_i)}{SXX}$$
$$= \frac{\beta \sum_{1}^{n} (x_i - \bar{x}_n) x_i}{SXX} = \beta$$

where the last step follows since $\sum_{1}^{n} (x_i - \bar{x}_n) x_i = \sum_{1}^{n} (x_i - \bar{x}_n) x_i - \sum_{1}^{n} (x_i - \bar{x}_n) \bar{x} = SXX$. See the textbook [1, page 331] for a proof that $\hat{\alpha}$ is also unbiased, and [1, Exercise 22.12] for a different proof for $\hat{\beta}$.

2.2 Variance and Standard Errors of the Coefficients

We calculate:

$$Var(\hat{\beta}) = \frac{\sum_{1}^{n} (x_i - \bar{x}_n)^2 Var(Y_i)}{SXX^2} = \sigma^2 \frac{\sum_{1}^{n} (x_i - \bar{x}_n)^2}{SXX^2} = \frac{\sigma^2}{SXX}$$
(6)

and:

$$Var(\hat{\alpha}) = Var(\bar{Y}_n - \hat{\beta}\bar{x}_n)$$

= $Var(\bar{Y}_n) + \bar{x}_n^2 Var(\hat{\beta}) - 2\bar{x}_n Cov(\bar{Y}_n, \hat{\beta})$
= $\frac{\sigma^2}{n} + \bar{x}_n^2 \frac{\sigma^2}{SXX} - 0 = \sigma^2(\frac{1}{n} + \frac{\bar{x}_n^2}{SXX})$ (7)

The covariance in the formula is zero because (recall that Y_1, \ldots, Y_n are independent):

$$Cov(\bar{Y}_{n},\hat{\beta}) = Cov(\frac{1}{n}\sum_{1}^{n}Y_{i},\frac{\sum_{1}^{n}(x_{i}-\bar{x}_{n})Y_{i}}{SXX})$$

$$= \frac{1}{nSXX}Cov(\sum_{1}^{n}Y_{i},\sum_{1}^{n}(x_{i}-\bar{x}_{n})Y_{i})$$

$$= \frac{1}{nSXX}\sum_{1}^{n}Cov(Y_{i},(x_{i}-\bar{x}_{n})Y_{i})$$

$$= \frac{1}{nSXX}\sum_{1}^{n}(x_{i}-\bar{x}_{n})Var(Y_{i}) = \frac{\sigma^{2}}{n}\frac{\sum_{1}^{n}(x_{i}-\bar{x}_{n})}{SXX} = 0$$

The *standard errors* of the coefficient estimators are defined as the estimates of the standard deviations (see (6) and (7)):

$$se(\hat{\alpha}) = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{\bar{x}_n^2}{SXX}\right)} \qquad \qquad se(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SXX}} \tag{8}$$

where:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$
(9)

is the (unbiased) estimate of σ^2 (see [1, page 332]).

2.3 Variance-Covariance Matrix

The variance-covariance matrix is:

$$\left(\begin{array}{cc} Var(\hat{\alpha}) & Cov(\hat{\alpha},\hat{\beta}) \\ Cov(\hat{\beta},\hat{\alpha}) & Var(\hat{\beta}) \end{array}\right)$$

where the unknown value σ^2 is replaced with the estimate $\hat{\sigma}^2$ from (9). The standard errors can be obtained from the square roots of the diagonal elements⁴ The matrix is symmetric, as covariance is symmetric. Moreover, we calculate:

$$Cov(\hat{\alpha}, \hat{\beta}) = Cov(\bar{Y}_n - \hat{\beta}\bar{x}_n, \hat{\beta})$$

$$= Cov(\bar{Y}_n, \hat{\beta}) - \bar{x}_n Cov(\hat{\beta}, \hat{\beta})$$

$$= -\bar{x}_n Var(\hat{\beta})$$
(10)

2.4 Variance and Standard Errors of Fitted Values

For a given value of the explanatory variable, say x_0 , the estimator $\hat{Y} = \hat{\alpha} + \hat{\beta}x_0$ has expectation $E[\hat{Y}] = E[\hat{\alpha}] + E[\hat{\beta}]x_0 = \alpha + \beta x_0$. Hence, \hat{Y} is unbiased and $\hat{y} = \hat{\alpha} + \hat{\beta}x_0$ is then the best estimate for the fitted value. We can compute the variance of \hat{Y} as:

^

$$\begin{aligned} Var(Y) &= Var(\hat{\alpha} + \beta x_0) \\ &= Var(\hat{\alpha}) + x_0^2 Var(\hat{\beta}) + 2x_0 Cov(\hat{\alpha}, \hat{\beta}) \\ &= Var(\hat{\alpha}) + (x_0^2 - 2x_0 \bar{x}_n) Var(\hat{\beta}) \\ &= \sigma^2 (\frac{1}{n} + \frac{\bar{x}_n^2}{SXX}) + \frac{(x_0^2 - 2x_0 \bar{x}_n)\sigma^2}{SXX} \\ &= \sigma^2 (\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX}) \end{aligned}$$

where $Cov(\hat{\alpha}, \hat{\beta})$ has been simplified based on (10). The *standard error* of the fitted value is then the estimate:

$$se(\hat{y}) = \hat{\sigma} \sqrt{(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})}$$
 (11)

⁴In R, with the expression sqrt(diag(vcov(fit))) where fit is the linear model.

3 Confidence Intervals for Simple Linear Regression

In this section, we make the normality assumption that $U_i \sim \mathcal{N}(0, \sigma^2)$ in the simple linear regression model [1, page 257]:

$$Y_i = \alpha + \beta x_i + U_i$$

A fortiori, we have $Y_i \sim \mathcal{N}(\alpha + \beta x_i, \sigma^2)$.

3.1 Confidence Intervals of the Coefficients

By (5), the estimator $\hat{\beta}$ is a linear combination of the Y_i 's, hence it has normal distribution as well. By Sections 1.1 and 1.2, it must be that:

$$\hat{\beta} \sim \mathcal{N}(\beta, Var(\hat{\beta}))$$

where the variance $Var(\hat{\beta})$ given in (6) is unknown because σ^2 is unknown. The studentized statistics:

$$\frac{\beta - \beta}{\sqrt{Var(\hat{\beta})}} \sim t(n-2) \tag{12}$$

has a t-student distribution with n-2 degrees of freedom (n-2) because 2 parameters are already estimated). The proof is this fact can be found in [2, page 45]. Hence:

$$P\left(-t_{n-2,0.025} \le \frac{\hat{\beta} - \beta}{\sqrt{Var(\hat{\beta})}} \le t_{n-2,0.025}\right) = 0.95$$

where $t_{n-2,0.025}$ is the critical value of t(n-2) at 0.025. Hence, a 95% confidence interval is:

 $\hat{\beta} \pm t_{n-2,0.025} se(\hat{\beta})$

where $se(\hat{\beta})$ is the standard error of $\hat{\beta}$ from (8). By following the same reasoning, we obtain the confidence intervals for α :

$$\hat{\alpha} \pm t_{n-2,0.025} se(\hat{\alpha})$$

where $se(\hat{\beta})$ is the standard error of $\hat{\beta}$ from (8).

3.2 Confidence and Prediction Intervals of the Fitted Values

Analogously to the previous subsection, for a fitted value $\hat{y} = \hat{\alpha} + \hat{\beta}x_0$, a 95% confidence interval is:

$$\hat{y} \pm t_{n-2,0.025} se(Y)$$

where $se(\hat{y})$ is from (11) In particular, this interval concerns the expectation of fitted values at x_0 . For example, we could conclude that the mean of predicted values at x_0 is between $\hat{y}-t_{n-2,0.025}se(\hat{y})$ and $\hat{y}+t_{n-2,0.025}se(\hat{y})$. For a given single prediction, we must also account for the variance of the error term U in:

$$\hat{V} = \hat{\alpha} + \hat{\beta}x_0 + U$$

Let us assume that $U \sim \mathcal{N}(0, \sigma^2)$. By reasoning as in Section 1.3, it can be shown that $Var(\hat{V}) = \sigma^2 (1 + \frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})$, and then by defining:

$$se(\hat{v}) = \hat{\sigma}\sqrt{(1 + \frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})}$$

we have that the *prediction interval* is:

$$\hat{y} \pm t_{n-2,0.025} se(\hat{v})$$

In this case, we could conclude that the specific predicted value at x_0 is on between $\hat{y} - t_{n-2,0.025} se(\hat{v})$ and $\hat{y} + t_{n-2,0.025} se(\hat{v})$.

3.3 Hypothesis Testing

Consider now the two-tailed test of hypothesis:

$$H_0: \beta = 0 \qquad H_1: \beta \neq 0$$

The p-value of observing $|\hat{\beta}|$ or a greater value under the null hypothesis, can be calculated from (12) as:

$$p = P(|T| > |t|) = 2 \cdot P(T > \left|\frac{\hat{\beta} - 0}{se(\hat{\beta})}\right|)$$

for $T \sim t(n-2)$. Hence, H_0 can be rejected in favor of H_1 at significance level of 0.05, i.e. p < 0.05, if $|t| > t_{n-2,0.025}$. A similar approach applies to the intercept.

4 Statistical Decision Theory

This section will be added later on.

References

- [1] F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, and L.E. Meester. A Modern Introduction to Probability and Statistics. Springer, 2005.
- [2] M. H. Kutner, C. J. Nachtsheim, J. Neter, and Li W. Applied Linear Statistical Models. 5th edition, 2005.