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1 On Cramér-Rao’s bound and MLE

Consider the log-likelihood function:

ℓ(θ) =

n∑
i=1

log fθ(Xi)

The MLE principle estimates the unknown parameter(s), given the observations, as the θ
which maximizes ℓ(θ). The log-likelihood takes its maximum at the zero’s of its derivative,
which is called the score function:

S(θ) =
∂

∂θ
ℓ(θ) =

n∑
i=1

∂

∂θ
log fθ(Xi)

Such a function is relevant beyond the maximization problem. It describes how much a
change in θ results into a change of the density, or, equivalently, how much much informative1

are the observations in estimating a parameter θ.
Let us introduce the random variables Yi =

∂
∂θ log fθ(Xi), for i = 1, . . . , n. The score

function can be written as S(θ) =
∑n

i=1 Yi. Since X1, . . . , Xn are i.i.d., by the propagation
of independence, this is also true for Y1 = ∂

∂θ log fθ(X1), . . . , Yn = ∂
∂θ log fθ(Xn).

The expectation of each Yi’s is zero (use Leibniz integral rule):

E
[
Yi

]
=

∫
(
∂

∂θ
log fθ(x))fθ(x)dx =

∫
1

fθ(x)
(
∂

∂θ
fθ(x))fθ(x)dx

=

∫
∂

∂θ
fθ(x)dx =

∂

∂θ

∫
fθ(x)dx =

∂

∂θ
1 = 0

Hence, by linearity of expectation, we have:

E
[
S(θ)

]
=

n∑
i=1

E
[
Yi

]
= 0

We resort then to the variance of S(θ) as a summary of the information provided by the
random sample. The variance of S(θ) is called the Fisher information, and it is the quantity:

I(θ) = V ar(S(θ)) = E
[
S(θ)2

]
It turns out23 that:

I(θ) = E
[
S(θ)2

]
= E

[
(

n∑
i=1

Yi)(

n∑
j=1

Yj)
]

= E
[ n∑
i=1

Y 2
i +

n∑
i=1

n∑
j=1,j ̸=i

YiYj

]
= E

[ n∑
i=1

Y 2
i

]
+

n∑
i=1

n∑
j=1,j ̸=i

E
[
Yi

]
E
[
Yj

]
(1)

1Recall that information is measured as − log fθ(X), i.e., events with small probability bring more
information.

2(1) follows since E
[
YiYj

]
= E

[
Yi

]
E
[
Yj

]
for independent Yi, Yj .

3(2) follows since E
[
Yi

]
= 0.
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= E
[ n∑
i=1

Y 2
i

]
+ 0 (2)

= E
[ n∑
i=1

(
∂

∂θ
log fθ(Xi))

2
]

= nE
[
(
∂

∂θ
log fθ(X))2

]
(3)

where X ∼ fθ. Important: some textbooks define I(θ) using a single random variable,
i.e., as E

[
( ∂
∂θ log fθ(X))2

]
. In such cases, it must be multiplied by n whenever it is used.

We can now link Fisher information to the Cramér-Rao inequality from [1, Remark 20.2]:

Var(T ) ≥ 1

nE
[
( ∂
∂θ log fθ(X))2

] for all θ,

by observing that, using (3), the right-hand side is the inverse of I(θ), i.e.:

Var(T ) ≥ 1

nE
[
( ∂
∂θ log fθ(X))2

] =
1

I(θ)
for all θ.

Example

The textbook [1, pages 324-325] shows that the unbiased MLE estimator of the mean µ of

a normal distribution N(µ, σ2) is X̄n = (X1 + . . .+Xn)/n. Let X ∼ 1
σ
√
2π

e−
1
2 (

x−µ
σ )2 .

The Fisher information is:

I(θ) = nE
[
(
∂

∂µ
log fµ(X))2

]
= nE

[
(
X − µ

σ2
)2
]

=
n

σ4
E
[
(X − µ)2

]
=

n

σ4
Var(X) =

n

σ4
σ2 =

n

σ2
=

1

Var(X̄n)

where the last equality follows because for i.i.d. random variables Var(X̄n) = σ2/n. By
taking the reciprocals:

Var(X̄n) =
1

I(θ)

we have that the lower bound of the Cramér-Rao inequality is reached, hence X̄n is a MVUE
(Minimum Variance Unbiased Estimator).

Exercise

Show the following equivalent formulation:

I(θ) = −nE
[ ∂

∂θ

∂

∂θ
log fθ(X)

]
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2 Least Square Estimators in Simple Linear Regression

Consider the least square estimators:

α̂ = Ȳn − β̂x̄n β̂ =

∑n
1 (xi − x̄n)(Yi − Ȳn)

SXX
(4)

where SXX =
∑n

1 (xi − x̄n)
2. Since

∑n
1 (xi − x̄n) = 0,we can rewrite β̂ as:

β̂ =

∑n
1 (xi − x̄n)Yi −

∑n
1 (xi − x̄n)Ȳn

SXX
=

∑n
1 (xi − x̄n)Yi

SXX
(5)

2.1 Expectation

β̂ is an unbiased estimator:

E[β̂] =

∑n
1 (xi − x̄n)E[Yi]

SXX

=

∑n
1 (xi − x̄n)(α+ βxi)

SXX

=
β
∑n

1 (xi − x̄n)xi

SXX
= β

where the last step follows since
∑n

1 (xi − x̄n)xi =
∑n

1 (xi − x̄n)xi −
∑n

1 (xi − x̄n)x̄ = SXX.
See the textbook [1, page 331] for a proof that α̂ is also unbiased, and [1, Exercise 22.12]

for a different proof for β̂.

2.2 Variance and Standard Errors of the Coefficients

We calculate:

V ar(β̂) =

∑n
1 (xi − x̄n)

2V ar(Yi)

SXX 2 = σ2

∑n
1 (xi − x̄n)

2

SXX 2 =
σ2

SXX
(6)

and:

V ar(α̂) = V ar(Ȳn − β̂x̄n)

= V ar(Ȳn) + x̄2
nV ar(β̂)− 2x̄nCov(Ȳn, β̂)

=
σ2

n
+ x̄2

n

σ2

SXX
− 0 = σ2(

1

n
+

x̄2
n

SXX
) (7)

The covariance in the formula is zero because (recall that Y1, . . . , Yn are independent):

Cov(Ȳn, β̂) = Cov(
1

n

n∑
1

Yi,

∑n
1 (xi − x̄n)Yi

SXX
)

=
1

nSXX
Cov(

n∑
1

Yi,

n∑
1

(xi − x̄n)Yi)

=
1

nSXX

n∑
1

Cov(Yi, (xi − x̄n)Yi)

=
1

nSXX

n∑
1

(xi − x̄n)V ar(Yi) =
σ2

n

∑n
1 (xi − x̄n)

SXX
= 0
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The standard errors of the coefficient estimators are defined as the estimates of the standard
deviations (see (6) and (7)):

se(α̂) = σ̂

√
(
1

n
+

x̄2
n

SXX
) se(β̂) =

σ̂√
SXX

(8)

where:

σ̂2 =
1

n− 2

n∑
1

(yi − α̂− β̂xi)
2 (9)

is the (unbiased) estimate of σ2 (see [1, page 332]).

2.3 Variance-Covariance Matrix

The variance-covariance matrix is:(
V ar(α̂) Cov(α̂, β̂)

Cov(β̂, α̂) V ar(β̂)

)
where the unknown value σ2 is replaced with the estimate σ̂2 from (9). The standard errors
can be obtained from the square roots of the diagonal elements4 The matrix is symmetric,
as covariance is symmetric. Moreover, we calculate:

Cov(α̂, β̂) = Cov(Ȳn − β̂x̄n, β̂)

= Cov(Ȳn, β̂)− x̄nCov(β̂, β̂)

= −x̄nV ar(β̂) (10)

2.4 Variance and Standard Errors of Fitted Values

For a given value of the explanatory variable, say x0, the estimator Ŷ = α̂ + β̂x0 has
expectation E[Ŷ ] = E[α̂] + E[β̂]x0 = α + βx0. Hence, Ŷ is unbiased and ŷ = α̂ + β̂x0 is
then the best estimate for the fitted value. We can compute the variance of Ŷ as:

V ar(Ŷ ) = V ar(α̂+ β̂x0)

= V ar(α̂) + x2
0V ar(β̂) + 2x0Cov(α̂, β̂)

= V ar(α̂) + (x2
0 − 2x0x̄n)V ar(β̂)

= σ2(
1

n
+

x̄2
n

SXX
) +

(x2
0 − 2x0x̄n)σ

2

SXX

= σ2(
1

n
+

(x̄n − x0)
2

SXX
)

where Cov(α̂, β̂) has been simplified based on (10). The standard error of the fitted value
is then the estimate:

se(ŷ) = σ̂

√
(
1

n
+

(x̄n − x0)2

SXX
) (11)

4In R, with the expression sqrt(diag(vcov(fit))) where fit is the linear model.
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3 Confidence Intervals for Simple Linear Regression

In this section, we make the normality assumption that Ui ∼ N (0, σ2) in the simple linear
regression model [1, page 257]:

Yi = α+ βxi + Ui

A fortiori, we have Yi ∼ N (α+ βxi, σ
2).

3.1 Confidence Intervals of the Coefficients

By (5), the estimator β̂ is a linear combination of of the Yi’s, hence it has normal distribution
as well. By Sections 1.1 and 1.2, it must be that:

β̂ ∼ N (β, V ar(β̂))

where the variance V ar(β̂) given in (6) is unknown because σ2 is unknown. The studentized
statistics:

β̂ − β√
V ar(β̂)

∼ t(n− 2) (12)

has a t-student distribution with n− 2 degrees of freedom (n− 2 because 2 parameters are
already estimated). The proof is this fact can be found in [2, page 45]. Hence:

P

−tn−2,0.025 ≤ β̂ − β√
V ar(β̂)

≤ tn−2,0.025

 = 0.95

where tn−2,0.025 is the critical value of t(n−2) at 0.025. Hence,a 95% confidence interval is:

β̂ ± tn−2,0.025se(β̂)

where se(β̂) is the standard error of β̂ from (8). By following the same reasoning, we obtain
the confidence intervals for α:

α̂± tn−2,0.025se(α̂)

where se(β̂) is the standard error of β̂ from (8).

3.2 Confidence and Prediction Intervals of the Fitted Values

Analogously to the previous subsection, for a fitted value ŷ = α̂ + β̂x0, a 95% confidence
interval is:

ŷ ± tn−2,0.025se(Ŷ )

where se(ŷ) is from (11) In particular, this interval concerns the expectation of fitted values
at x0. For example, we could conclude that the mean of predicted values at x0 is between
ŷ−tn−2,0.025se(ŷ) and ŷ+tn−2,0.025se(ŷ). For a given single prediction, we must also account
for the variance of the error term U in:

V̂ = α̂+ β̂x0 + U

Let us assume that U ∼ N (0, σ2). By reasoning as in Section 1.3, it can be shown that

V ar(V̂ ) = σ2(1 + 1
n + (x̄n−x0)

2

SXX ), and then by defining:

se(v̂) = σ̂

√
(1 +

1

n
+

(x̄n − x0)2

SXX
)
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we have that the prediction interval is:

ŷ ± tn−2,0.025se(v̂)

In this case, we could conclude that the specific predicted value at x0 is on between ŷ −
tn−2,0.025se(v̂) and ŷ + tn−2,0.025se(v̂).

3.3 Hypothesis Testing

Consider now the two-tailed test of hypothesis:

H0 : β = 0 H1 : β ̸= 0

The p-value of observing |β̂| or a greater value under the null hypothesis, can be calculated
from (12) as:

p = P (|T | > |t|) = 2 · P (T >

∣∣∣∣∣ β̂ − 0

se(β̂)

∣∣∣∣∣)
for T ∼ t(n− 2). Hence, H0 can be rejected in favor of H1 at significance level of 0.05, i.e.
p < 0.05, if |t| > tn−2,0.025. A similar approach applies to the intercept.

7



4 Statistical Decision Theory

This section will be added later on.
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