Statistics for Data Science

University of Pisa, Italy
Salvatore Ruggieri
April 15, 2022

Contents

1 On Cramér-Rao's bound and MLE 2
2 Least Square Estimators in Simple Linear Regression 4
2.1 Expectation . 4
2.2 Variance and Standard Errors of the Coefficients 4
2.3 Variance-Covariance Matrix . 5
2.4 Variance and Standard Errors of Fitted Values 5

3 Confidence Intervals for Simple Linear Regression 6
3.1 Confidence Intervals of the Coefficients . 6
3.2 Confidence Intervals of the Fitted Values . 6
3.3 Hypothesis Testing . 7

1 On Cramér-Rao's bound and MLE

Consider the likelihood and log-likelihood functions:

$$
L(\theta)=\prod_{i=1}^{n} f_{\theta}\left(X_{i}\right) \quad \ell(\theta)=\log L(\theta)=\sum_{i=1}^{n} \log f_{\theta}\left(X_{i}\right)
$$

Since X_{1}, \ldots, X_{n} are i.i.d., this is also true for $Y_{1}=\frac{\partial}{\partial \theta} \log f_{\theta}\left(X_{1}\right), \ldots, Y_{n}=\frac{\partial}{\partial \theta} \log f_{\theta}\left(X_{n}\right)$. The log-likelihood takes its maximum at the zero's of its derivative, which is called the score function:

$$
S(\theta)=\frac{\partial}{\partial \theta} \ell(\theta)=\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_{\theta}\left(X_{i}\right)=\sum_{i=1}^{n} Y_{i}
$$

The expectation of each Y_{i} 's is zero (use Leibniz integral rule):

$$
\begin{aligned}
\mathrm{E}\left[Y_{i}\right] & =\int\left(\frac{\partial}{\partial \theta} \log f_{\theta}(x)\right) f_{\theta}(x) d x=\int \frac{1}{f_{\theta}(x)}\left(\frac{\partial}{\partial \theta} f_{\theta}(x)\right) f_{\theta}(x) d x \\
& =\int \frac{\partial}{\partial \theta} f_{\theta}(x) d x=\frac{\partial}{\partial \theta} \int f_{\theta}(x) d x=\frac{\partial}{\partial \theta} 1=0
\end{aligned}
$$

Hence, by linearity of expectation, we have:

$$
\mathrm{E}[S(\theta)]=\sum_{i=1}^{n} \mathrm{E}\left[Y_{i}\right]=0
$$

The variance of $S(\theta)$ is called the Fisher information, and it is the quantity:

$$
I(\theta)=\mathrm{E}\left[S(\theta)^{2}\right]
$$

It turns out四that:

$$
\begin{align*}
I(\theta)=\mathrm{E}\left[S(\theta)^{2}\right] & =\mathrm{E}\left[\left(\sum_{i=1}^{n} Y_{i}\right)\left(\sum_{j=1}^{n} Y_{j}\right)\right] \\
& =\mathrm{E}\left[\sum_{i=1}^{n} Y_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} Y_{i} Y_{j}\right] \\
& =\mathrm{E}\left[\sum_{i=1}^{n} Y_{i}^{2}\right]+\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \mathrm{E}\left[Y_{i}\right] \mathrm{E}\left[Y_{j}\right] \tag{1}\\
& =\mathrm{E}\left[\sum_{i=1}^{n} Y_{i}^{2}\right]+0 \tag{2}\\
& =\mathrm{E}\left[\sum_{i=1}^{n}\left(\frac{\partial}{\partial \theta} \log f_{\theta}\left(X_{i}\right)\right)^{2}\right] \\
& =n \mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^{2}\right] \tag{3}
\end{align*}
$$

where $X \sim f_{\theta}$. Important: some textbooks define $I(\theta)$ using a single random variable, i.e., as $\mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^{2}\right]$. In such cases, it must be multiplied by n whenever it is used.

[^0]We can now link Fisher information to the Cramér-Rao inequality from [1, Remark 20.2]:

$$
\operatorname{Var}(T) \geq \frac{1}{n \mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^{2}\right]} \quad \text { for all } \theta
$$

by observing that, due to (3), the right-hand side is the inverse of $I(\theta)$, i.e.:

$$
\operatorname{Var}(T) \geq \frac{1}{n \mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^{2}\right]}=\frac{1}{I(\theta)} \quad \text { for all } \theta
$$

Example

The textbook [1, pages 324-325] shows that the unbiased MLE estimator of the mean μ of a normal distribution $N\left(\mu, \sigma^{2}\right)$ is $\bar{X}_{n}=\left(X_{1}+\ldots+X_{n}\right) / n$. Let $X \sim \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$.
The Fisher information is:

$$
\begin{aligned}
I(\theta) & =n \mathrm{E}\left[\left(\frac{\partial}{\partial \mu} \log f_{\mu}(X)\right)^{2}\right] \\
& =n \mathrm{E}\left[\left(\frac{X-\mu}{\sigma^{2}}\right)^{2}\right] \\
& =\frac{n}{\sigma^{4}} \mathrm{E}\left[(X-\mu)^{2}\right] \\
& =\frac{n}{\sigma^{4}} \operatorname{Var}(X)=\frac{n}{\sigma^{4}} \sigma^{2}=\frac{n}{\sigma^{2}}=\frac{1}{\operatorname{Var}\left(\bar{X}_{n}\right)}
\end{aligned}
$$

where the last equality follows because for i.i.d. random variables $\operatorname{Var}\left(\bar{X}_{n}\right)=\sigma^{2} / n$. By taking the reciprocals:

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{1}{I(\theta)}
$$

we have that the lower bound of the Cramér-Rao inequality is reached, hence \bar{X}_{n} is a MVUE (Minimum Variance Unbiased Estimator).

2 Least Square Estimators in Simple Linear Regression

Consider the least square estimators:

$$
\begin{equation*}
\hat{\alpha}=\bar{Y}_{n}-\hat{\beta} \bar{x}_{n} \quad \hat{\beta}=\frac{\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)}{S X X} \tag{4}
\end{equation*}
$$

where $S X X=\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}$. Since $\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right)=0$, we can rewrite $\hat{\beta}$ as:

$$
\begin{equation*}
\hat{\beta}=\frac{\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) Y_{i}-\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) \bar{Y}_{n}}{S X X}=\frac{\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) Y_{i}}{S X X} \tag{5}
\end{equation*}
$$

2.1 Expectation

$\hat{\beta}$ is an unbiased estimator:

$$
\begin{aligned}
E[\hat{\beta}] & =\frac{\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) E\left[Y_{i}\right]}{S X X} \\
& =\frac{\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right)\left(\alpha+\beta x_{i}\right)}{S X X} \\
& =\frac{\beta \sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) x_{i}}{S X X}=\beta
\end{aligned}
$$

where the last step follows since $\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) x_{i}=\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) x_{i}-\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) \bar{x}=S X X$. See the textbook 1, page 331] for a proof that $\hat{\alpha}$ is also unbiased, and [1, Exercise 22.12] for a different proof for $\hat{\beta}$.

2.2 Variance and Standard Errors of the Coefficients

We calculate:

$$
\begin{equation*}
\operatorname{Var}(\hat{\beta})=\frac{\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \operatorname{Var}\left(Y_{i}\right)}{S X X^{2}}=\sigma^{2} \frac{\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}}{S X X^{2}}=\frac{\sigma^{2}}{S X X} \tag{6}
\end{equation*}
$$

and:

$$
\begin{align*}
\operatorname{Var}(\hat{\alpha}) & =\operatorname{Var}\left(\bar{Y}_{n}-\hat{\beta} \bar{x}_{n}\right) \\
& =\operatorname{Var}\left(\bar{Y}_{n}\right)+\bar{x}_{n}^{2} \operatorname{Var}(\hat{\beta})-2 \bar{x}_{n} \operatorname{Cov}\left(\bar{Y}_{n}, \hat{\beta}\right) \\
& =\frac{\sigma^{2}}{n}+\bar{x}_{n}^{2} \frac{\sigma^{2}}{S X X}-0=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}_{n}^{2}}{S X X}\right) \tag{7}
\end{align*}
$$

The covariance in the formula is zero because (recall that Y_{1}, \ldots, Y_{n} are independent):

$$
\begin{aligned}
\operatorname{Cov}\left(\bar{Y}_{n}, \hat{\beta}\right) & =\operatorname{Cov}\left(\frac{1}{n} \sum_{1}^{n} Y_{i}, \frac{\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) Y_{i}}{S X X}\right) \\
& =\frac{1}{n S X X} \operatorname{Cov}\left(\sum_{1}^{n} Y_{i}, \sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) Y_{i}\right) \\
& =\frac{1}{n S X X} \sum_{1}^{n} \operatorname{Cov}\left(Y_{i},\left(x_{i}-\bar{x}_{n}\right) Y_{i}\right) \\
& =\frac{1}{n S X X} \sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right) \operatorname{Var}\left(Y_{i}\right)=\frac{\sigma^{2}}{n} \frac{\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right)}{S X X}=0
\end{aligned}
$$

The standard errors of the coefficient estimators are defined as the estimates of the standard deviations (see (6) and (7)):

$$
\begin{equation*}
s e(\hat{\alpha})=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\bar{x}_{n}^{2}}{S X X}\right)} \quad s e(\hat{\beta})=\frac{\hat{\sigma}}{\sqrt{S X X}} \tag{8}
\end{equation*}
$$

where:

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{1}{n-2} \sum_{1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2} \tag{9}
\end{equation*}
$$

is the (unbiased) estimate of σ^{2} (see [1, page 332]).

2.3 Variance-Covariance Matrix

The variance-covariance matrix is:

$$
\left(\begin{array}{cc}
\operatorname{Var}(\hat{\alpha}) & \operatorname{Cov}(\hat{\alpha}, \hat{\beta}) \\
\operatorname{Cov}(\hat{\beta}, \hat{\alpha}) & \operatorname{Var}(\hat{\beta})
\end{array}\right)
$$

where the unknown value σ^{2} is replaced with the estimate $\hat{\sigma}^{2}$ from (9). The standard errors can be obtained from the square roots of the diagonal elements \int^{3} The matrix is symmetric, as covariance is symmetric. Moreover, we calculate:

$$
\begin{align*}
\operatorname{Cov}(\hat{\alpha}, \hat{\beta}) & =\operatorname{Cov}\left(\bar{Y}_{n}-\hat{\beta} \bar{x}_{n}, \hat{\beta}\right) \\
& =\operatorname{Cov}\left(\bar{Y}_{n}, \hat{\beta}\right)-\bar{x}_{n} \operatorname{Cov}(\hat{\beta}, \hat{\beta}) \\
& =-\bar{x}_{n} \operatorname{Var}(\hat{\beta}) \tag{10}
\end{align*}
$$

2.4 Variance and Standard Errors of Fitted Values

For a given value of the explanatory variable, say x_{0}, the estimator $\hat{Y}=\hat{\alpha}+\hat{\beta} x_{0}$ has expectation $E[\hat{Y}]=E[\hat{\alpha}]+E[\hat{\beta}] x_{0}=\alpha+\beta x_{0}$. Hence, \hat{Y} is unbiased and $\hat{y}=\hat{\alpha}+\hat{\beta} x_{0}$ is then the best estimate for the fitted value. We can compute the variance of \hat{Y} as:

$$
\begin{aligned}
\operatorname{Var}(\hat{Y}) & =\operatorname{Var}\left(\hat{\alpha}+\hat{\beta} x_{0}\right) \\
& =\operatorname{Var}(\hat{\alpha})+x_{0}^{2} \operatorname{Var}(\hat{\beta})+2 x_{0} \operatorname{Cov}(\hat{\alpha}, \hat{\beta}) \\
& =\operatorname{Var}(\hat{\alpha})+\left(x_{0}^{2}-2 x_{0} \bar{x}_{n}\right) \operatorname{Var}(\hat{\beta}) \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}_{n}^{2}}{S X X}\right)+\frac{\left(x_{0}^{2}-2 x_{0} \bar{x}_{n}\right) \sigma^{2}}{S X X} \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\left(\bar{x}_{n}-x_{0}\right)^{2}}{S X X}\right)
\end{aligned}
$$

where $\operatorname{Cov}(\hat{\alpha}, \hat{\beta})$ has been simplified based on 10 . The standard error of the fitted value is then the estimate:

$$
\begin{equation*}
s e(\hat{y})=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\left(\bar{x}_{n}-x_{0}\right)^{2}}{S X X}\right)} \tag{11}
\end{equation*}
$$

[^1]
3 Confidence Intervals for Simple Linear Regression

In this section, we make the normality assumption that $U_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ in the simple linear regression model [1, page 257]:

$$
Y_{i}=\alpha+\beta x_{i}+U_{i}
$$

A fortiori, we have $Y_{i} \sim \mathcal{N}\left(\alpha+\beta x_{i}, \sigma^{2}\right)$.

3.1 Confidence Intervals of the Coefficients

By (5), the estimator $\hat{\beta}$ is a linear combination of of the Y_{i} 's, hence it has normal distribution as well. By Sections 1.1 and 1.2, it must be that:

$$
\hat{\beta} \sim \mathcal{N}(\beta, \operatorname{Var}(\hat{\beta}))
$$

where the variance $\operatorname{Var}(\hat{\beta})$ given in (6) is unknown because σ^{2} is unknown. The studentized statistics:

$$
\begin{equation*}
\frac{\hat{\beta}-\beta}{\sqrt{\operatorname{Var}(\hat{\beta})}} \sim t(n-2) \tag{12}
\end{equation*}
$$

has a t-student distribution with $n-2$ degrees of freedom ($n-2$ because 2 parameters are already estimated). The proof is this fact can be found in [2, page 45]. Hence:

$$
P\left(-t_{n-2,0.025} \leq \frac{\hat{\beta}-\beta}{\sqrt{\operatorname{Var}(\hat{\beta})}} \leq t_{n-2,0.025}\right)=0.95
$$

where $t_{n-2,0.025}$ is the critical value of $t(n-2)$ at 0.025 . Hence, a 95% confidence interval is:

$$
\hat{\beta} \pm t_{n-2,0.025} s e(\hat{\beta})
$$

where $s e(\hat{\beta})$ is the standard error of $\hat{\beta}$ from 8. By following the same reasoning, we obtain the confidence intervals for α :

$$
\hat{\alpha} \pm t_{n-2,0.025} s e(\hat{\alpha})
$$

where $\operatorname{se}(\hat{\beta})$ is the standard error of $\hat{\beta}$ from (8).

3.2 Confidence Intervals of the Fitted Values

Analogously to the previous subsection, for a fitted value $\hat{y}=\hat{\alpha}+\hat{\beta} x_{0}$, a 95% confidence interval is:

$$
\hat{y} \pm t_{n-2,0.025} \operatorname{se}(\hat{Y})
$$

where $s e(\hat{y})$ is from (11) In particular, this interval concerns the expectation of fitted values at x_{0}. For example, we could conclude that the mean of predicted values at x_{0} is between $\hat{y}-t_{n-2,0.025} s e(\hat{y})$ and $\hat{y}+t_{n-2,0.025} s e(\hat{y})$. For a given single prediction, we must also account for the variance of the error term U in:

$$
\hat{V}=\hat{\alpha}+\hat{\beta} x_{0}+U
$$

Let us assume that $U \sim \mathcal{N}\left(0, \sigma^{2}\right)$. By reasoning as in Section 1.3, it can be shown that $\operatorname{Var}(\hat{V})=\sigma^{2}\left(1+\frac{1}{n}+\frac{\left(\bar{x}_{n}-x_{0}\right)^{2}}{S X X}\right)$, and then by defining:

$$
\operatorname{se}(\hat{v})=\hat{\sigma} \sqrt{\left(1+\frac{1}{n}+\frac{\left(\bar{x}_{n}-x_{0}\right)^{2}}{S X X}\right)}
$$

we have that the prediction interval is:

$$
\hat{y} \pm t_{n-2,0.025} s e(\hat{v})
$$

In this case, we could conclude that the specific predicted value at x_{0} is on between $\hat{y}-$ $t_{n-2,0.025} s e(\hat{v})$ and $\hat{y}+t_{n-2,0.025} s e(\hat{v})$.

3.3 Hypothesis Testing

Consider now the two-tailed test of hypothesis:

$$
H_{0}: \beta=0 \quad H_{1}: \beta \neq 0
$$

The p-value of observing $|\hat{\beta}|$ or a greater value under the null hypothesis, can be calculated from (12) as:

$$
p=P(|T|>|t|)=2 \cdot P\left(T>\left|\frac{\hat{\beta}-0}{\operatorname{se}(\hat{\beta})}\right|\right)
$$

for $T \sim t(n-2)$. Hence, H_{0} can be rejected in favor of H_{1} at significance level of 0.05 , i.e. $p<0.05$, if $|t|>t_{n-2,0.025}$. A similar approach applies to the intercept.

4 Statistical Decision Theory

This section will be added later on.

References

[1] F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, and L.E. Meester. A Modern Introduction to Probability and Statistics. Springer, 2005.
[2] M. H. Kutner, C. J. Nachtsheim, J. Neter, and Li W. Applied Linear Statistical Models. 5th edition, 2005.

[^0]: ${ }^{1} 11$ follows since $\mathrm{E}\left[Y_{i} Y_{j}\right]=\mathrm{E}\left[Y_{i}\right] \mathrm{E}\left[Y_{j}\right]$ for independent Y_{i}, Y_{j}.
 ${ }^{2} 2$ f follows since $\mathrm{E}\left[Y_{i}\right]=0$.

[^1]: ${ }^{3}$ In R, with the expression $\operatorname{sqrt}(\operatorname{diag}(v \operatorname{cov}(f i t)))$ where fit is the linear model.

