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Testing independence/association: discrete data

• Pearson’s Chi-Square test of independence
• X and Y discrete (finite) distributions
• (x1, y1) . . . , (xn, yn) bivariate observed dataset
• H0 : X ⊥⊥ Y H1 : X ̸⊥⊥ Y
• Test statistic:

χ2 =
∑
i ,j

(Oi ,j − Ei ,j)
2

Ei ,j
= n

∑
i ,j

(Oi ,j/n − pi ,.p.,j)
2

pi ,.p.,j
∼ χ2(df )

where Oi ,j is the number of observations of value X = i and Y = j , Ei ,j = npi ,.p.,j where
pi ,. =

∑
j Oi ,j/n and p.,j =

∑
i Oi ,j/n. df = (nx − 1)(ny − 1) where nx (resp., ny ) is the

size of the support of X (resp., Y )
• Exact test when n is small: Fisher’s exact test
• Paired data (e.g., before and after taking a drug): McNemar’s test

See R script
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https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
https://en.wikipedia.org/wiki/Fisher%27s_exact_test
https://en.wikipedia.org/wiki/McNemar%27s_test


Association between nominal variables: χ2-based
• Association measures based on Pearson χ2 [See [Lesson 16]

▶ ϕ coefficient (or MCC, Matthews correlation coefficient)
□ For 2× 2 contingency tables: [Exercise. Show ϕ = |rxy |]

ϕ =

√
χ2

n
∈ [0, 1]

▶ Cramer’s V
□ For contingency tables larger than 2× 2:

V =

√
χ2

n ·min {r − 1, c − 1} ∈ [0, 1]

where r and c are the number of rows and columns
▶ Tschuprov’s T [sames as V if r = c]

□ For contingency tables larger than 2× 2:

T =

√
χ2

n ·
√

(r − 1)(c − 1)
∈ [0, 1]

where r and c are the number of rows and columns

See R script
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https://en.wikipedia.org/wiki/Phi_coefficient
https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V
https://en.wikipedia.org/wiki/Tschuprow%27s_T


The G-test and Mutual Information

• G-test of independence

• X and Y discrete (finite) distributions

• (x1, y1) . . . , (xn, yn) bivariate observed dataset

• H0 : X ⊥⊥ Y H1 : X ̸⊥⊥ Y

• Test statistic:

G = 2
∑
i,j

Oi,j log
Oi,j

Ei,j
= 2

∑
i,j

Oi,j log
Oi,j

npi,.p.,j
∼ χ2(df )

where Oi,j is the number of observations of value X = i and Y = j , Ei,j = npi,.p.,j where
pi,. =

∑
j Oi,j/n and p.,j =

∑
i Oi,j/n. df = (nx − 1)(ny − 1) where nx (resp., ny ) is the size of

the support of X (resp., Y )

• Preferrable to Chi-Squared when numbers (Oij or Eij) are small, asymptotically equivalent

• G = 2 · n · I (O,E ) where I (O,E ) is the mutual information between O and E [See Lesson 16]

See R script
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https://en.wikipedia.org/wiki/G-test


Testing correlation: continuous data

• Population correlation:

ρ =
E [(X − µX ) · (Y − µY )]

σX · σY
• Pearson’s correlation coefficient:

r =

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2

• Assumption: joint distribution of X ,Y is bivariate normal (or large sample)
• (x1, y1) . . . , (xn, yn) bivariate observed dataset
• H0 : ρ = 0 H1 : ρ ̸= 0
• Test statistics:

T =
r
√
n − 2√
1− r2

∼ t(n − 2)

See R script
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Testing AUC-ROC

• Binary classifier score sθ(w) ∈ [0, 1] where sθ(w) estimate η(w) = PθTRUE (C = 1|W = w)

• ROC Curve
▶ TPR(p) = P(sθ(w) ≥ p|C = 1) and FPR(p) = P(sθ(w)|C = 0)
▶ ROC Curve is the scatter plot TPR(p) over FPR(p) for p ranging from 1 down to 0
▶ AUC-ROC is the area below the curve What does AUC-ROC estimate?
▶ Linearly related to Somer’s D correlation index (a.k.a. Gini coefficient) [See Lesson 16]
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Testing AUC-ROC
• AUC is the probability of correct identification of the order between two instances:

AUC = PθTRUE (sθ(W 1) < sθ(W 2)|CW 1 = 0,CW 2 = 1)

where (W 1,CW 1) ∼ fθTRUE and (W 2,CW 2) ∼ fθTRUE

• sθ(W1), . . . , sθ(Wn) ∼ FθTRUE |C=1 and sθ(V1), . . . , sθ(Vm) ∼ FθTRUE |C=0

U =
n∑

i=1

m∑
j=1

S(sθ(Wi ), sθ(Vj)) S(X ,Y ) =

 1 if X > Y
1/2 if X = Y
0 if X < Y

▶ AUC-ROC = U/(n ·m) is an estimator of AUC

• Related to W = U + n(n+1)
2 , where W is the Wilcoxon rank-sum test statistics [See Lesson 34]

• Normal approximation, DeLong’s algorithm or bootstrap for confidence interval estimation

See R script
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https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test


Omnibus tests and post-hoc tests

• H0 : θ1 = θ2 = . . . = θk [= 0]

• H1 : θi ̸= θj for some i ̸= j
• Omnibus tests detect any of several possible differences

▶ Advantage: no need to pre-specify which treatments are to be compared . . .
. . . and then no need to adjust for making multiple comparisons

• If H1 is rejected (test significant), a post-hoc test to find which θi ̸= θj
▶ Everything to everything post-hoc compare all pairs
▶ One to everything post-hoc compare a new population to all the others

• We distinguish a few cases:
▶ Multiple linear regression (normal errors + homogeneity of variances, i.e., Ui ∼ N(0, σ2)):

□ F -test + t-test
▶ Equality of means (normal distributions + homogeneity of variances):

□ ANOVA + Tukey/Dunnett
▶ Equality of means (general distributions):

□ Friedman + Nemenyi
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F -test for multiple linear regression

• Y = X · β + U , where Y = (Y1, . . . ,Yn), U = (U1, . . . ,Un), and X = (x1, . . . , xn)
▶ βT = (α, β1, . . . , βk) and x i = (1, x1i , . . . , x

k
i )

▶ Unexplained (residual) error SSE = S(β) =
∑n

i=1(yi − x i · β)2

• Null model (or intercept-only model): Y = 1 · α+ U
▶ Total error SST = S(α) =

∑n
i=1(yi − ȳn)

2 [residuals of the null model]

• Explained error SSR = SST − SSE =
∑n

i=1(ȳn − x i · β)2

• Coefficient of determination R2 = SSR/SST = 1− SSE/SST [See Lesson 20]
▶ Is the model useful? Fraction of explained error

• Is the model statistically significant? [vs a specific βi significant? See Lesson 29]

• H0 : β1 = . . . = βk = 0 H1 : βi ̸= 0 for all i = 1, . . . , k

• Test statistic: F = SSR
SSE

n−k−1
k ∼ F (k, n − k − 1)

See R script
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Equality of means: ANOVA

• H0 : µ1 = µ2 = . . . = µk [generalization of two sample t-test]
• H1 : µ1 ̸= µ2 for some i ̸= j
• datasets y j1, . . . , y

j
nj for j = 1, . . . , k

▶ Assumption: normality (Shapiro-Wilk test) + homogeneity of variances (Bartlett test)
▶ responses of k − 1 treatments and 1 control group [one way ANOVA]
▶ accuracies of k classifiers over nj = n datasets [repeated measures/two way ANOVA]

• Linear regression model over dummy encoded j :

Y = α+ β1x1 + . . .+ βk−1xk−1

▶ α = µk is the mean of the reference group (j = k)
▶ βj = µj − µk

▶ in R: lm(Y∼Group) where Group contains the labels of j = 1, . . . , k
• F -test (over linear regression): H0 : β1 = . . . = βk = 0, i.e., µj = µk for j = 1, . . . , k
• Tukey HSD (Honest Significant Differences) is an all-pairs post-hoc test
• Dunnet test is a one-to-everything test

See R script
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https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://en.wikipedia.org/wiki/Bartlett%27s_test
https://en.wikipedia.org/wiki/Tukey%27s_range_test
https://en.wikipedia.org/wiki/Dunnett%27s_test


Non-parametric test of equality of means: Friedman

• H0 : µ1 = µ2 = . . . = µk

• H1 : µ1 ̸= µ2 for some i ̸= j
• datasets x j1, . . . , x

j
n for j = 1, . . . , k [paired observations/repeated measures]

▶ accuracies of k classifiers over n datasets
• Let r ji be the rank of x ji in x1i , . . . , x

k
i

▶ e.g., j th classifier w.r.t. i th dataset
• Average rank of classifier: Rj =

1
n

∑n
i=1 r

j
i

• Under H0, we have R1 = . . . = Rk and, for n and k large:

χ2
F =

12n

k(k + 1)

 k∑
j=1

R2
j − k(k + 1)2

4

 ∼ χ2(k)

• Nemenyi test is an all-pairs post-hoc test
• Bonferroni correction is a one-to-everything test
• For unpaired observations, use Kruskal-Wallis test instead of Friedman test

See R script
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https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance


Optional reference

• On confidence intervals and statistical tests (with R code)

Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)

Nonparametric Statistical Methods.

3rd edition, John Wiley & Sons, Inc.
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