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Critical values and p-values

Sampling distribution
of T under Hy N

Ca T

L Critical region K = [ca,00)

Critical region K: the set of values that reject Hy in favor of Hj at significance level «
Critical values: values on the boundary of the critical region

p-value: the probability of obtaining test results at least as extreme as the results actually
observed, under the assumption that Hjy is true

t € K iff p-value < «
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Misues of p-values

M|smterpretat|ons of p-values, [Greenland et al, 2016]

aJ-’ee%nat—we—hypet—heas—rs—ﬁa-lse— A p-value |nd|cates the degree of compat|b|||ty between a

dataset and a particular hypothetical explanation

® The0-05-significancetevelis-the-one-to-be-used: No, it is merely a convention. There is

no reason to consider results on opposite sides of any threshold as qualitatively different.

® A-largep-value-is-evidence-infavor-of-the-test-hypothesis: A p-value cannot be said to

favor the test hypothesis except in relation to those hypotheses with smaller p-values

the chance is either 100% or 0%. The 5% refers only to how often you would reject it,
and therefore be in error.
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s-values

More compatible with the test model
>
>

Same absolute differences in P-values (both differences = 0.0999)

Difference = 0.0999 Difference = 0.0999
P-values p =0.0001 p=010 7090 p=0.9999
(compatibility) ‘ ‘ Y
S-values 5=13.29 5=3.32 _015 5=0.0001
(bits of information) \/
Difference = 9.97 bits Difference < 0.15 bits

However, vastly different differences in corresponding S-values (9.97 bits vs. < 0.15 bits)

More information against the test model
<
<

® Shannon information value or surprisal value (s-value) is — log, p
® p=0.05= s =4.3- no more surprising than getting all heads on 4 fair coin tosses.

® p=10.005= p =7.64 - no more surprising than getting all heads on 8 fair coin tosses.
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The multiple comparisons problem

® Single test Hp : 6 = 0, with significance level o = 0.05 [false positive rate]
> test is called significant when we reject Hp
» « is Type | error, probability of rejecting Hy when it is true

® Multiple tests, say m = 20
» Eg., H;:0; =0fori=1,..., m where 6; is the expectation of a subpopulation

® What is the probability of rejecting at least one Hé when all of them are true?
P(at least one reject) = P(U{pi < a})=1-P(N{pi>a})=1—-(1—-a)”
and then 1 — (0.95)%° ~ 0.64

Family-wise error rate (FWER)

The FWER is the probability of making at least one Type | error in a
family of n tests. If the tests are independent:

OFWER — 1-— (1 — a)"’

If the test are dependent: arpwer < m- «
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https://xkcd.com/882/

Multiple comparisons: corrections

® Bonferroni correction (most conservative one):

_ OFWER
m

Hence, p < a iff p- m < arpwer
e Siddk correction (exact for independent tests): [invert appwer =1 — (1 — )]

a=1—(1-arwer)’

Hence, p < aiff 1 — (1 — p)m < OFWER
See R script
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False Discovery Rate and g-values

True state of nature

Ho is true Hy is true

Reject Ho False Positive | True Positive

Our decision on the
basis of the data

Not reject H, | TTue Negative | False Negative

False Positive Rate: FPR = FP/(FP + TN)
» Corrections control for FPR since FWER = P(FP > 0|H) i=1,..., m)

e Drawback: acting on « increases FNR = FN/(FN + TP)

® False Discovery Rate: FDR = FP/(FP + TP) [Korthauer et al, 2019]
» FDR = 0.05 means 5% of rejected Hp's are actually true

® g-value is P(Ho| T > t) [vs. p=P(T > t|Hp)]

» FDR can be controlled by requiring g < threshold

See R script
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https://en.wikipedia.org/wiki/Q-value_(statistics)

Distribution fitting and quality of fitting

® Dataset xi,..., X, realization of X1,..., X, ~ F

® Distribution fitting: What is a plausible F?

» Parametric approaches:
O Assume F = F()) for some family F, and estimate A as A
O Maximum Likelihood Estimation (point estimate):

A = argmax, L()\)
O Parametric bootstrap (p-value):

Tks = sup|F, (a) — Fz.(a)|

acR

» Non-parametric approaches:
O Empirical distribution
O Kernel Density Estimation

® Quality of fitting: Among several fits F, ..., Fx, which one is the best?

» Goodness of fit: how good is F; in fitting the data?
» Comparison: which one between two F; and F, is better?
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Quality of fitting

® Loss functions (to be minimized)
» Akaike information criterion (AIC), balances model fit against model simplicity

AIC(F(X)) = 2|M| — 24(X)
» Bayesian information criterion (BIC), stronger balances over model simplicity
BIC(F(\)) = |A|log n — 26()\)

e Statistics (continuous data):
» KStest Hy: X ~ F Hy: X # F with Kolmogorov-Smirnov (KS) statistic:

D =sup|F,(a) — F(a)| ~ K
aceR

» LR test Hy: X ~ F;  Hy : X ~ F, with the likelihood-ratio test:

L(F1(M))

m = K(Fl()\l)) — E(FQ(AQ)) with — 2\ p ~ X2

ALr = log

See R script
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https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Likelihood-ratio_test

Goodness of fit

Chi-square distribution

The Chi-square distribution with k degrees of freedom x?(k) has density:

_ 1 kf2—1 —x/2
f(x) = —2k/2r(k/2)x e

Let Xi,..., X ~ N(0,1). Then Y = Yk X2 ~ y2(k)

e Statistics (discrete data):
» Pearson’s Chi-Square test Hy: X ~ F  Hy : X o F with x? statistic:

N,'fn,'2 N,-nfpi2
oy Wi nf s Wil o e
N;>0 ni N;>0 p(l)
where N; number of observations of value i, nj = n- p(i) expected number of observations
(rescaled), and df = |{i | N; > 0}| — 1 is the number of observed values minus 1.
X% = oo if for some i: nj =0
See R script
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https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test

Common distributions

® Probability distributions at Wikipedia
® Probability distributions in R

° @ C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition

Wiley

min X, Negative a=f=1 Beta-binomial
binomial (n,a,B)
(n, p)

-1 Hypergeometric
P= %8 (M, K)

a+f—

_—"p=MIN,n=K

Relationships among common distributions. Solid lines represent transformations and special
cases, dashed lines represent limits. Adapted from Leemis (1986). 11/13


https://en.wikipedia.org/wiki/List_of_probability_distributions
https://CRAN.R-project.org/view=Distributions

Comparing two datasets

Dataset xi, ..., x, realization of Xi,..., X, ~ F;
Dataset yi, ..., ym realization of Yi,..., Y, ~ F,
Ho:R=F H:FH#F

Continuous data: KS statistics

D =sup|Fi(a) — Fa(a)| ~ K
acR

Discrete data: 2 statistics

2 _ (VoR — \/%5")2 2
=) RIS, X" (df)
R, >0VvS;>0

where R; (resp., S;) is the number of observations in xi,...,x, (resp., y1,...,¥m) of value /,
df = |{I |R,‘ >0VS; >0}|—1

Useful to detect covariate drift (data stability) from source to target datasets (training set vs
deployment set) [See also Lessons 16 and 35 for association measures]
See R script
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https://en.wikipedia.org/wiki/Concept_drift

Optional references

@ Keegan Korthauer, Patrick K. Kimes, Claire Duvallet, Alejandro Reyes, Ayshwarya Subramanian,
Mingxiang Teng, Chinmay Shukla, Eric J. Alm, and Stephanie C. Hicks (2019)

A practical guide to methods controlling false discoveries in computational biology.
Genome Biology 20, article 118
@ Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N.
Goodman, and Douglas G. Altman (2016)
Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.

European Journal of Epidemiology 31, pages 337-350
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1716-1
https://link.springer.com/article/10.1007/s10654-016-0149-3

