
Master Program in Data Science and Business Informatics

Statistics for Data Science
Lesson 23 - Statistical decision theory

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy

salvatore.ruggieri@unipi.it

1 / 24

mailto:salvatore.ruggieri@unipi.it

MAP

• Question: which hypothesis is the most probable given the observed data?
▶ Maximum Likelihood Estimation (MLE) is a frequentist method:

θMLE = arg max
θ

P(X1 = x1, . . . ,Xn = xn|θ) = arg max
θ

n∏
i=1

fθ(xi)

▶ Maximum a Posteriori (MAP) is a Bayesian method (requires prior distribution):

θMAP = arg max
θ

P(θ|X1 = x1, . . . ,Xn = xn) = arg max
θ

P(X1 = x1, . . . ,Xn = xn|θ)P(θ)

□ since by the Bayes theorem

P(θ|X1 = x1, . . . ,Xn = xn) =
P(X1 = x1, . . . ,Xn = xn|θ)P(θ)

P(X1 = x1, . . . ,Xn = xn)

▶ MAP = MLE if prior is uniform

2 / 24

Classification/concept learning

• X = (W ,C) where W are predictive features and C class, with support(C) = {0, 1, . . . , nC − 1}
• x1, . . . , xn are observations (training set), with xi = (wi , ci) for i = 1, . . . , n

• θ ∈ Θ with Θ hypothesis space (parameters of ML model) with fθ joint density of W ,C

• Question: which hypothesis (parameters) is the most probable given the observed data?

▶ θMLE = arg maxθ ℓ(θ) = arg minθ −ℓ(θ) = arg minθ
∑n

i=1 − log fθ(xi)
▶ fθ(xi) = fθ(wi , ci) = fθ(ci |wi)fθ(wi)
▶ θMLE = arg minθ

∑n
i=1 − log fθ(ci |wi)−

∑n
i=1 log fθ(wi)

▶ Assuming θ ⊥⊥ W , we have fθ1(wi) = fθ2(wi), and then:

θMLE = arg min
θ

n∑
i=1

− log fθ(ci |wi)

▶ How to compute θMLE? Closed form, brute force enumeration of θ ∈ Θ, heuristic search, . . .

• fθ(c |w) = P(C = c |W = w , θ) is called a probabilistic classifier learned/trained from x1, . . . , xn

3 / 24

Probabilistic classifiers: examples

• Logistic regression

• k-Nearest Neighbors (k-NN)

• Decision trees

• Neural networks

• Naive Bayes P(C = c0|W = w) = P(C = c0)
∏

i P(Wi = wi |C = c0)/P(W = w)

assuming P(W = w |C = c0) =
∏

i P(Wi = wi |C = c0)

• Ensembles

• Gradient boosting

• . . .

• More classifiers at the Data Mining course

See R script

4 / 24

MLE and KL divergence/Cross-Entropy

θMLE = arg min
θ

n∑
i=1

− log fθ(ci |wi)

• Assume data is generated from fθTRUE , i.e., (W ,C) ∼ fθTRUE

• We compute:

θMLE = arg min
θ

n∑
i=1

(− log fθ(ci |wi) + log fθTRUE (ci |wi)) = arg min
θ

1

n

n∑
i=1

log
fθTRUE (ci |wi)

fθ(ci |wi)

n→∞−−−→LLN arg min
θ

E(W ,C)∼fθTRUE
[log

fθTRUE (C |W)

fθ(C |W)
] = arg min

θ
D(θTRUE ∥ θ) = arg min

θ
H(θTRUE ; θ)

• Asymptotically: ML maximization = KL divergence minimization = Cross-entropy minimization

5 / 24

Classification/concept prediction

• Question: which is the most probable prediction for given w and θ?

• Classification/concept prediction problem
▶ Problem: given θ ∈ Θ and W = w , what is the most probable C = c? i.e.:

arg max
c

P(C = c ,W = w |θ)

which is equivalent, assuming θ ⊥⊥ W , to:

arg max
c

P(C = c |W = w , θ) = arg max
c

fθ(c |w)

• Bayes decision rule y∗
θ (w) = arg maxc fθ(c |w) [or simply, y∗]

Theorem (Bayes decision rule is optimal)

Fix θ ∈ Θ. For any decision rule y+
θ : R|W | → {0, . . . , nC − 1}:

P(y∗
θ (W) ̸= C) ≤ P(y+

θ (W) ̸= C)

Proof. P(y∗
θ (W) = C) = E [1y∗

θ (W)=C] = E [EC [1y∗
θ (W)=C |W = w]] ≥

≥ E [EC [1y+
θ (W)=C |W = w]] = E [1y+

θ (W)=C] = P(y+
θ (W) = C) 6 / 24

Decision boundary

• A decision boundary for a decision rule y+θ () is the region w ∈ R|W | such that y+θ (w)
could admit as possible answers two or more classes

• For y∗θ , it is the region w ∈ R|W | such that arg maxc fθ(c |w) is not unique.

• For y∗θ and nC = 2, it is the region w ∈ R|W | such that fθ(1|w) = 0.5.

See R script

7 / 24

Bayes optimal predictions

• Question: which is the most probable prediction given w?

• Possible answer: arg maxc P(C = c |W = w , θMAP) = y∗
θMAP

(w)

• No, we can do better
▶ Let Θ = {θ1, θ2, θ3} and

□ P(θ1|X1 = x1, . . . ,Xn = xn) = 0.4
□ P(θ2|X1 = x1, . . . ,Xn = xn) = P(θ3|X1 = x1, . . . ,Xn = xn) = 0.3

▶ Hence θMAP = θ1
▶ Assume fθ1(1|w) = 1 and fθ2(0|w) = fθ3(0|w) = 1
▶ Hence, prediction 0 has the largest probability, whilst prediction of θMAP is 1

• Problem: given W = w , what is the most probable C = c? i.e.:

arg max
c

P(C = c |W = w ,X1 = x1, . . . ,Xn = xn)

Bayes optimal prediction

arg max
c

∑
θ∈Θ

fθ(c |w)P(θ|X1 = x1, . . . ,Xn = xn)

8 / 24

Probabilistic classifier

• Probabilistic classifier: fθ(c |w) ∈ [0, 1] with
∑

c fθ(c|w) = 1:
▶ learned from x1, . . . , xn
▶ predicted probabilities (p0, . . . , pnC−1) with pi = fθ(i |w)
▶ most probable class y∗

θ = arg maxc fθ(c |w)
▶ confidence (of most probable class) p∗θ = maxc fθ(c |w)

• Unnormalized classifier: ucθ(c |w) ∈ R
▶ unnormalized values (v0, . . . , vnC−1) with vi = ucθ(i |w)
▶ normalization:

softmax((v0, . . . , vnC−1)) = (
ev0∑
i e

vi
, . . . ,

evnC−1∑
i e

vi
)

▶ binary classes (v0 = 0, v1):

softmax((0, v1)) = (1− z , z) where z = sigmoid(v1) = inv .logit(v1) =
1

1 + e−v1

▶ softmax(v + c) = softmax(v)
▶ d

dv softmax(v) = softmax(v)(1− softmax(v))

9 / 24

Example: Perceptron with sigmoid activation

Activation
function

∑
α2w2

...
...

αdwd

α1w1

α01

inputs weights

θ = (α0, α1, . . . , αd)

w = (w1, . . . ,wd)

z = sigmoid(θ · (1,w)T) = sigmoid(α0 +
d∑

i=1

αi · wi)

y∗θ = arg max (1− z , z)

• Difference with logistic regression?
▶ Weights calculated differently (MLE vs gradient descent)
▶ Perceptron is parametric to activation functions
▶ Perceptron with sigmoid activation = Logistic regression

10 / 24

https://en.wikipedia.org/wiki/Activation_function

Binary classification/concept learning
• X = (W ,C) where W are predictive features and C class, with support(C) = {0, 1}
• x1, . . . , xn are observations (training set), with xi = (wi , ci)

• Definition. Score function: sθ(w) = fθ(1|w) = P(C = 1|W = w , θ)
▶ predicted probabilities (1− sθ(w), sθ(w))
▶ confidence (of most probable class): max{1− sθ(w), sθ(w)}
▶ fθ(xi) = fθ((wi , ci)) = fθ(ci |wi)fθ(wi) = sθ(wi)

ci (1− sθ(wi))
(1−ci)P(wi)

• MLE estimation

θMLE = arg min
θ

n∑
i=1

− log fθ(ci |wi) = arg min
θ

1

n

n∑
i=1

−ci log sθ(wi)− (1− ci) log (1− sθ(wi))

• Cross-entropy loss or log-loss:

ℓθ(c ,w) =

{
− log sθ(w) ifc = 1
− log (1− sθ(w)) ifc = 0

• MLE maximization = Log-loss minimization

θMLE = arg min
θ

1

n

n∑
i=1

ℓθ(ci ,wi)

11 / 24

MLE and ERM for classification/concept learning

Empirical risk minimization

Let ℓθ : {0, . . . , nC − 1} × R|W | → R≥0 be a loss function.

θERM = arg min
θ

1

n

n∑
i=1

ℓθ(ci ,wi)

• MLE is ERM with Log-loss ℓθ(c ,w) = − log fθ(c |w) = log 1
P(c|w ,θ)

• 0-1 loss ℓθ(c ,w) = 1y+
θ (w) ̸=c where y+

θ (w) ∈ {0, . . . , nC − 1} is a decision rule

▶ not convex, not differentiable, optimization problem is NP-hard

• Lp error loss for binary classifiers ℓθ(c ,w) = |sθ(w)− c |p

▶ absolute error loss or L1: |sθ(w)− c |
▶ squared error loss or L2 or Brier score: (sθ(w)− c)2

12 / 24

Loss functions and classifiers

• Gradient of loss function determines updates of weights α0, . . . , αd in the direction of improving
the loss (Backpropagation)

• Similar idea in ensamble of decision trees, where each one improves on the error of the previous
one (Gradient boosting trees)

13 / 24

Loss functions and margin

• Binary classes C = {−1, 1}, unnormalized scores sθ(w) ∈ R
▶ Bayes decision rule becomes: y∗

θ = sgn(sθ(w))

• Margin defined as
m = c · sθ(w)

▶ Margin > 0 if prediction is correct (i..e, sθ(w) ≥ 0 and c = 1, or if sθ(w) < 0 and c = −1)
▶ Loss minimization equivalent to margin maximization

• Margin-based loss: Loss function ℓθ(c ,w) that can be written as ϕ(m):
▶ 0-1 loss: ϕ(m) = 1m≤0

▶ Logistic log-loss: ϕ(m) = log2 (1 + e−m)
▶ L2 loss: ϕ(m) = (1−m)2

▶ SVM/Hinge loss: ϕ(m) = max{0, 1−m}
▶ AdaBoost/Exponential loss: ϕ(m) = e−m

• Methods for margin maximization exists for a convex margin-based loss
▶ that also provide bounds on 0-1 loss
▶ that encode regularizations in the margin-based loss

See R script
14 / 24

MSE and the bias-variance trade-off

• Squared error loss θERM = arg minθ MSE , where the Mean Squared Error is:

MSE =
1

n

n∑
i=1

(sθ(wi)− ci)
2

▶ Why named MSE? Because MSE
n→∞−−−→LLN E(W ,C)∼fθTRUE

[(sθ(W)− C)2]
▶ MSE approximates the Mean Squared-Error over the population
▶ Notice: in MSE for estimators C was a constant (parameter)

• Assumes that C = D + ϵ, where E [ϵ] = 0

▶ Observed class labels ci include some noise w.r.t. true labels, i.e., ci = di + ϵi

• Decomposition of MSE:

E [MSE] = Var(sθ(W)) + E [sθ(W)− C]2 + Var(ϵ)

▶ Var(ϵ) irreducible error
▶ E [sθ(W)− C]2 is Bias2. Minimized by interpolating training data, but with high variance.
▶ Var(sθ(W)) variance of the scores. Minimized by a constant score, but with high bias.

15 / 24

Loss functions and risk

Consider the squared error loss. For n → ∞:

θERM = arg min
θ

1

n

n∑
i=1

(sθ(w)− ci)
2 → arg min

θ
E(W ,C)∼fθTRUE

[(sθ(W)− C)2]

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function ℓθ is R(θTRUE , θ) = E(W ,C)∼fθTRUE
[ℓθ(C ,W)].

Definition. A loss function is a proper scoring rule if:

θTRUE = arg min
θ

R(θTRUE , θ)

• For log-loss, R(θTRUE , θ) = D(θTRUE ∥ θ) ≥ 0 and D(θTRUE ∥ θ) = 0 iff θ = θTRUE

• Log-loss and L2 are proper scoring rules, whilst L1 is not

▶ Hence, for squared error loss, for n → ∞, θERM → θTRUE

16 / 24

Bayes optimal classifier for 0-1 loss

• Risk of 0-1 loss, binary case. Let η(w) = PθTRUE (C = 1|W = w), and y+
θ a decision rule.

E(W ,C)∼fθTRUE
[1y+

θ (W) ̸=C] = EW [EC [1y+
θ (W) ̸=C |W]]

= EW [P(C = 1|W) · 1y+
θ (W)̸=1 + P(C = 0|W) · 1y+

θ (W) ̸=0]

= EW [η(W) · 1y+
θ (W)=0 + (1− η(W)) · 1y+

θ (W)=1]

≥ EW [min {η(W), 1− η(W)}]
= EW [η(W) · 1y∗

θTRUE
(W)=0 + (1− η(W)) · 1y∗

θTRUE
(W)=1]

= E(W ,C)∼fθTRUE
[1y∗

θTRUE
(W) ̸=C] Bayes error rate

where y∗
θTRUE

is the Bayes optimal classifier (or Bayes rule):

y∗
θTRUE

(w) =

{
1 if η(w) ≥ 1/2
0 if η(w) < 1/2

• Hence, arg miny+
θ
E(W ,C)∼fθTRUE

[1y+
θ (W) ̸=C] = y∗

θTRUE

• Optimal decision boundary: η(w) = 1/2

See R script 17 / 24

Bayes optimal classifier

η(w) = PθTRUE (C = 1|W = w)

• η() is unknown! (unless we are controlling data generation)

• Plug-in rule: use η̂(w) = fθ(c |w) = Pθ(C = 1|W = w) as an estimate of η(w)

• Naive Bayes P(C = c0|W = w) = P(C = c0)
∏

i P(Wi = wi |C = c0)/P(W = w)

assuming P(W = w |C = c0) =
∏

i P(Wi = wi |C = c0)

▶ Naive Bayes estimates η(w) from empirical distribution of x1, . . . , xn
▶ and assuming independence of features

• 1-NN asymptotically converges (|θ| → ∞) to risk: [Cover and Hart (1967)]

r ≤ E(W ,C)∼fθTRUE
[1y1-NN

θ (W)̸=C] ≤ 2r(1− r) ≤ 2r

where r is the Bayes error rate.

• Bayes optimal classifier is optimal also for squared loss [Prove it]

▶ Square loss is convex and differentiable (better use for optimization)

18 / 24

https://doi.org/10.1109/TIT.1967.1053964

Maximum and Bayes risks

Risk

The risk w.r.t. a loss function ℓ is R(θTRUE , θ) = E(W ,C)∼fθTRUE
[ℓθ(C ,W)].

Definition. The maximum risk is

R̄(θ) = sup
θTRUE

R(θTRUE , θ)

A classifier fθ′ such that R̄(θ′) = infθ R̄(θ) is called a minimax rule.

Definition. Let f (θTRUE) be a prior for θTRUE . The Bayes risk is

r(θ) =

∫
R(θTRUE , θ)f (θTRUE)dθTRUE

A classifier fθ′ such that r(θ′) = infθ r(θ) is called a Bayes rule.

19 / 24

Classifiers in R: Libraries

The Caret package (Classification And REgression Training)
rpart (Recursive PARTitioning for classification, regression and survival trees)

randomForest (Breiman and Cutler’s Random Forests for classification and regression)
lightgbm (LIGHT Gradient Boosting Machine)

fastai (Fast and accurate neural networks training)
kernlab (KERNel-Based Machine Learning LAB)

rminer (Data mining classification and regression methods)
. . .

See R script

20 / 24

https://topepo.github.io/caret/
https://www.rdocumentation.org/packages/rpart/versions/4.1-15
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/lightgbm/index.html
https://cran.r-project.org/web/packages/fastai/index.html
https://cran.r-project.org/web/packages/kernlab/index.html
https://cran.r-project.org/web/packages/rminer/index.html

Reject option in binary classification

η(w) = PθTRUE (C = 1|W = w)

Bayes optimal classifier (or Bayes rule):

y∗
θTRUE

(w) =

{
1 if η(w) ≥ 1/2
0 if η(w) < 1/2

• Recall: P(y∗
θ (w) ̸= C) = min {η(w), 1− η(w)}

• If η(w) ≈ 1/2, we might just as well toss a coin to make a decision

• This motivates the introduction of a reject option for classifiers

▶ reject, or abstain, expressing doubt or uncertainty in decisions
▶ relevant in practice (e.g., to understand the cases where a classifier performs poorly),
▶ relevant ethically for socially sensitive decision tasks (e.g., credit scoring, disease prediction,

CV screeening, etc.)

21 / 24

Reject option in binary classification

η(w) = PθTRUE (C = 1|W = w)

Bayes optimal classifier (with reject option):

y∗
θTRUE

(w) =

 1 if η(w) > 1− d
0 if η(w) < d
abstain otherwise, i.e., d ≤ min{η(w), 1− η(w)}

where d ∈ [0, 1/2] is the reject cost.

▶ If y∗
θTRUE

(w) ̸= abstain [d upper bound on misclassification error]

d ≥ P(y∗
θ (w) ̸= C) = min {η(w), 1− η(w)}

Theorem (Chow 1970).

arg min
y+
θ

E(W ,C)∼fθTRUE
[d1y+

θ (W)=abstain + 1y+
θ (W) ̸=C ,y+

θ (W)̸=abstain] = y∗
θTRUE

22 / 24

Selective binary classification
A selective binary classifier (score) is a pair (sθ, gθ), where sθ() is a classifier (score) and
gθ : W → {0, 1} is a selection function, which determines when to accept/abstain from using sθ as
follows:

(sθ, gθ)(w) =

{
sθ(w), if gθ(w) = 1

abstain, otherwise

Support and Risk

The coverage of a selective classifier is ϕ(gθ) = E(W ,C)∼fθTRUE
[gθ(W)], i.e., the expected

probability of the accepted region.
The risk w.r.t. a loss function ℓθ is R(sθ, gθ) = E(W ,C)∼fθTRUE

[ℓθ(C ,W)gθ(W)]/ϕ(gθ).

• Empirical coverage and empirical selective risk:

ϕ̂(gθ) =

∑n
i=1 gθ(wi)

n
r̂(sθ, gθ) =

1
n

∑n
i=1 ℓθ(ci ,wi)gθ(wi)

ϕ̂(gθ)

• Selective classification problem: minimize risk while guaranteeing a minimum support c

arg min
θ

R(sθ, gθ) s.t. ϕ(gθ) ≥ c
23 / 24

Selective binary classification
A selective binary classifier (score) is a pair (sθ, gθ), where sθ() is a classifier (score) and
gθ : W → {0, 1} is a selection function, which determines when to accept/abstain from using sθ as
follows:

(sθ, gθ)(w) =

{
sθ(w), if gθ(w) = 1

abstain, otherwise

• Soft selection: gθ(w) = 1 iff kθ(w) ≥ τ where kθ(w) is a confidence function

▶ A good confidence function should rank instances based on descending loss, i.e., if
k(w) ≤ k(w ′) then E [ℓθ(C ,w)] ≥ E [ℓθ(C ,w ′)].

▶ E.g., confidence of the classifier: kθ(w) = min{sθ(w), 1− sθ(w)}
• The inherent trade-off between risk and coverage is summarized by the risk-coverage curve

See R script

24 / 24

