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Issues: Omitted variable bias

® Suppose we omit a variable z; that belongs to the true model

Yi = a+ fix;i + fazi + U;
with 32 # 0 (i.e., Y is determined by Z)

» Under-specification of the model, due to lack of data
¢ Fitted model Y; = o + f1x + U!

» Hence, E[U,’] = E[ﬁzZ,‘ + U,'] = Przi + E[U,'] = Boz; #0
® | et & and 31 be the LSE estimators of the fitted model:

E[1] = 1 + 26 Bias(f51) = 20

where § is the slope of the regression of z; = v + dx; + U/, i.e.:

Sz
0 = hey—
Sx

® Bias(f31) # 0 if X and Z correlated
See R script
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Issues: Multi-collinearity and variance inflation factors

® Multicollinearity: two or more independent variables (regressors) are strongly correlated.
° Yi=a+ fix} + fox? + U
® |t can be shown that for j € {1,2}:
1 o?
(1 — r2) SXXj

where r = cor(x!, x?), % = Var(U;) and SXX; = Zf(xf — x))2
® Correlation between regressors increases the variance of the estimators
® |n general, for more than 2 variables:

Var(ﬁAj) =

N 1 o?

Var()) = 4= R?)  SXX;

where RJ-2 is the coefficient of determination (R?) in the regression of x; from all other x;'s.
The term 1/(1-R?) is called variance inflation factor
See R script
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Variable selection

® Recall: when U; ~ N(0,02), we have Y; ~ N(x; - 3,02), hence we can apply MLE

1(vi=x;-B)?
® Log-likelihood is £(3) = > i 1Iog(mﬁe 2( o2 ) )
® Akaike information criterion (AIC), balances model fit against model simplicity

AIC(B) = 2|8| — 2¢(B)

¢ stepAlC(model, direction="backward") algorithm
L S={x}...,x}
2. b=AIC(S)
3. repeat
3.1 x = arg minses AIC(S \ {x})
32 v=AIC(S\{x})
33 if v<bthen S;b=S5\{x},v
4. until no change in S
5. return S

See R script
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Regularization methods: Ridge/Tikhonov

B = arg min S(B)
® Ordinary Least Square Estimation (OLS):
SB) =ly - X8|

where [|(v1,...,vn)|| = /> v? is the Euclidian norm
» Performs poorly as for prediction (overfitting) and interpretability (number of variables)

® Ridge regression:

S(8) = ly — X - BII* + 2|81

where [|B] = \/a2 + 3K, 82,

Notice that A; is not in the parameters of the minimization problem!

» Variables with minor contribution have their coefficients close to zero

» It improves prediction error by reducing overfitting through a bias-variance trade-off
» It is not a parsimonious method, i.e., does not reduce features

v
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Regularization methods: Lasso and Penalized

® Lasso (Least Absolute Shrinkage and Selection Operator) regression:

S(B)=lly — X - 8>+ A8k
where [|8]|1 = |a] + 3K, |81

» Notice that A1 is not in the parameters of the minimization problem!

» Variable with minor contribution have their coefficients equal to zero

» It improves prediction error by reducing overfitting through a bias-variance trade-off
» It is a parsimonious method, i.e., it reduces the number of features

® Penalized linear regression:

S(8) = Ily — X - BI + X2[181% + A1l Blx
» Both Ridge and Lasso regularization parameters
® How to solve the minimization problems? Lagrange multiplier method or reduction to
Support Vector Machine learning
® How to find the best A; and/or \»? Cross-validation!
See R script
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https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Elastic_net_regularization
https://en.wikipedia.org/wiki/Elastic_net_regularization

Towards logistic regression

® (Consider a bivariate dataset
(X17y1)7 ) (Xnayn)

where y; € {0,1}, i.e., Y; is a binary variable

® Using directly linear regression:
Yi=a+px+ U

results in poor performances (R?)

See R script
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Towards logistic regression

® Consider a bivariate dataset
(Xla)/1)7 ] (Xna)/n)
where y; € {0,1}, i.e., Y; i binary variable
® Group by x values:
(di, A1)y .., (dm, Tm)
where di, ..., d, are the distinct values of xq,...,x, and f; is the fraction of 1's:
[ elln] [ x=diny =1}
e [l [ = di}]

and the linear model (we continue using x; but it should be d;):

f =

Fi=a+px+ U

See R script
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Towards logistic regression

® Rather than f;, we model the logit of f;
logit(Fi) = oo+ Bx; + U;
where logit and its inverse (logistic function) are:
e 1
1+ex 14e%

inv.logit(x)

logit(p) = log T

1

_D
0.5
® Why?

» F; €[0,1] while the RHS is in R
» Relation between RHS and F; is typically sigmoidal, not linear

See R script o)1



Logistic regression and generalized linear models

® Since Y;'s are binary, F; = P(Y; = 1|X = x;) ~ Ber(f;), and U; is not necessary
logit(F;) = o + Bx;
and then F; = P(Y; = 1|X = x;) = inv.logit(a + 8x;) = %
® Since F;/(1 — F;) = e**P% B can be interpreted as:
» the expected change in log odds of having the outcome per unit change in X
» e.g., 3 =0.38 in predicting heart disease from smoking: the smoking group has e’ = 1.46

times the odds of the non-smoking group of having heart disease
» e.g.,, @ = —1.93 means the probability a non-smoker has heart disease is e*/(1 + e*) = 0.13.

® Generalized linear models: family = distribution + link function
» E.g., Binomial + logit for logistic regression
» For Y; € {0,1}, actually Bernoulli + logit [Binary logistic regression]

® Since distribution is known, MLE can be adopted for estimating o and §:

Ua,B) = Z [yi log (inv.logit(o + Bx;)) + (1 — y;) log (1 — inv.logit(a + Bx;))]

= See R script 10/11



Elastic net logistic regression

® Penalized linear regression minimizes:

ly = X - B8] + X281 + A8l

» A1 = 0 is the Ridge penalty
» Ay = 0 is the Lasso penalty

® Flastic net regularization for logistic regression minimizes:

(1—«a)

~t8)+7 (B3 1812 + alalh )

» o = 0 is the Ridge penalty
» o =1 is the Lasso penalty
» )\ is to be found, e.g., by cross-validation
See R script
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