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Simple linear regression model

• Regression line: y = α+ βx with intercept α and slope β

• Least Square Estimators: α̂ and β̂ and σ̂2

• Unbiasedness: E [α̂] = α and E [β̂] = β and E [σ̂2] = σ2

• Standard errors (estimates of
√
Var(α̂) and

√
Var(β̂)):

se(α̂) = σ̂

√
(
1

n
+

x̄2n
SXX

) se(β̂) =
σ̂√
SXX
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Standard error of fitted values (prediction ± standard error)

• For a given x0, the the estimator Ŷ = α̂+ β̂x0 has expectation

E [Ŷ ] = E [α̂] + E [β̂]x0 = α+ βx0

• Hence, Ŷ is unbiased, and ŷ = α̂+ β̂x0 is the best estimate for the fitted value at x0

• Variance of Ŷ is: [See sdsln.pdf Chpt. 2]

Var(Ŷ ) = σ2(
1

n
+

(x̄n − x0)
2

SXX
)

• The standard error of the fitted value is then the estimate:

se(ŷ) = σ̂

√
(
1

n
+

(x̄n − x0)2

SXX
)

where

SXX =
n∑
1

(xi − x̄n)
2 σ̂2 =

1

n − 2

n∑
1

(yi − α̂− β̂xi )
2

• Prediction uncertainty at x0 is reported as ŷ ± se(ŷ)

See R script
3 / 18



Weighted Least Squares and simple polynomial regression

• Weighted Simple Regression

S(α, β) =
n∑

i=1

(yi − α− βxi )
2wi

▶ wi is the weight (or importance) of observation (xi , yi )
▶ For natural number weights, it is the same as replicating instances

• Polynomial Simple Regression

S(α, β) =
n∑

i=1

(yi − α− β1xi − β2x
2
i − . . .− βkx

k
i )

2

▶ Yi = α+ β1xi + β2x
2
i + . . .+ βkx

k
i + Ui for i = 1, 2, . . . , n

▶ May suffer from collinearity (see later in this slides)

See R script
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Non-linear simple regression and transformably linear functions

• Yi = f (α, β, xi ) + Ui for i = 1, 2, . . . , n for a non-linear function f ()

S(α, β) =
n∑

i=1

(yi − f (α, β, xi ))
2

• arg minα,β S(α, β) may be without a closed form

▶ use numeric search of the minimum (which may fail to find it!), e.g., gradient descent

• Some f () can be favourably transformed, e.g., f (α, β, xi ) = αxβi (recall Power law, Zipf’s)

• Solve logYi = logα+ β log xi + Ui [Linearization]

• Let log α̂ and β̂ be the LSE estimators. By exponentiation:

Yi = α̂x β̂i e
Ui

where the error term is a multiplicative factor

See R script
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Multiple linear regression
• Multivariate dataset of observations:

(x11 , x
2
1 , . . . , x

k
1 , y1), . . . , (x

1
n , x

2
n , . . . , x

k
n , yn)

• Yi = α+ β1x
1
i + . . .+ βkx

k
i + Ui

• In vector terms:
▶ Yi = x i · βT + Ui , where β = (α, β1, . . . , βk) and x i = (1, x1i , . . . , x

k
i ) the i th observation

▶ Y = X · βT + U , where Y = (Y1, . . . ,Yn), U = (U1, . . . ,Un), and X = (x1, . . . , xn)

• Ordinary Least Square Estimation (OLS):

S(β) =
n∑

i=1

(yi −x i ·βT )2 = ∥y −X ·βT∥2 β̂ = argminβS(β) = (XT ·X )−1 ·XT ·y

where y = (y1, . . . , yn) and ∥(v1, . . . , vn)∥ =
√∑n

i=1 v
2
i is the Euclidian norm

• Meaning of βi : change of Y due to a unit change in xi all the xj with j ̸= i unchanged!
• It is a Minimum Variance linear Unbiased Estimator [Gauss-Markov Thm.]

See R script
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Multivariate linear regression

• The multivariate linear model accommodates two or more dependent variables

Y = XβT + U

where
▶ Y is n ×m: n observations, m dependent variables
▶ X is n × (k + 1): n observations, k independent variables +1 constants
▶ βT is (k + 1)×m: parameters for each of the m dependent variables
▶ U is n ×m: n observations, m error terms

• It is not just a collection of m multiple linear regressions

• Errors in rows (observations) of U are independent, as in a single multiple linear regression
• Errors in columns (dependent variables) are allowed to be correlated.

▶ E.g., errors of plasma level and amitriptyline due to usage of drugs
▶ Hence, coefficients from the models covary!

See R script
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Other variants and generalizations

• Heteroscedastic linear models
▶ Relax the assumption of equal variances Var(Ui ) = σ2

• Generalized least squares
▶ U1, . . . ,Un not necessarily independent

• Hierarchical linear models
▶ Nested or cluster organization (e.g., Children within classrooms within schools)
▶ See this intro in R

• Generalized linear models
▶ We’ll see next at Logistic Regression

• Tobit regression
▶ Censored dependent variable, e.g., income cannot be negative

• Truncated regression model
▶ Dependent variable not available/sampled, e.g., income above a poverty threshold

• Quantile regression
▶ Estimate of the median (or other quantiles) instead of the mean, as in regression
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Issues: Omitted variable bias

• Suppose we omit a variable zi that belongs to the true model

Yi = α+ β1xi + β2zi + Ui

with β2 ̸= 0 (i.e., Y is determined by Z )
▶ Under-specification of the model, due to lack of data

• Fitted model Yi = α+ β1xi + U ′
i

▶ Hence, E [U ′
i ] = E [β2zi + Ui ] = β2zi + E [Ui ] = β2zi ̸= 0

• Let α̂ and β̂1 be the LSE estimators of the fitted model:

E [β̂1] = β1 + β2δ Bias(β̂1) = β2δ

where δ is the slope of the regression of zi = γ + δxi + U ′′
i , i.e.:

δ = rxz
sz
sx

• Bias(β̂1) ̸= 0 if X and Z correlated

See R script
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Issues: Multi-collinearity and variance inflation factors

• Multicollinearity : two or more independent variables (regressors) are strongly correlated.
• Yi = α+ β1x

1
i + β2x

2
i + Ui

• It can be shown that for j ∈ {1, 2}:

Var(β̂j) =
1

(1− r2)
· σ2

SXX j

where r = cor(x1, x2), σ2 = Var(Ui ) and SXX j =
∑n

1(x
j
i − x̄ jn)2

• Correlation between regressors increases the variance of the estimators
• In general, for more than 2 variables:

Var(β̂j) =
1

(1− R2
j )

· σ2

SXX j

where R2
j is the coefficient of determination (R2) in the regression of xj from all other xi ’s.

• The term 1/(1−R2
j ) is called variance inflation factor

See R script
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Variable selection

• Recall: when Ui ∼ N(0, σ2), we have Yi ∼ N(x i · β, σ2), hence we can apply MLE

• Log-likelihood is ℓ(β) =
∑n

i=1 log (
1

σ
√
2π
e
− 1

2

(
yi−x i ·β

σ2

)2

)

• Akaike information criterion (AIC), balances model fit against model simplicity

AIC (β) = 2|β| − 2ℓ(β)

• stepAIC(model, direction=”backward”) algorithm
1. S = {x1, . . . , xk}
2. b = AIC (S)
3. repeat

3.1 x = arg minx∈S AIC(S \ {x})
3.2 v = AIC(S \ {x})
3.3 if v < b then S , b = S \ {x}, v

4. until no change in S
5. return S

See R script
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Regularization methods: Ridge/Tikhonov

β̂ = arg min
β

S(β)

• Ordinary Least Square Estimation (OLS):

S(β) = ∥y − X · β∥2

where ∥(v1, . . . , vn)∥ =
√∑n

i=1 v
2
i is the Euclidian norm

▶ Performs poorly as for prediction (overfitting) and interpretability (number of variables)

• Ridge regression:
S(β) = ∥y − X · β∥2 + λ2∥β∥2

where ∥β∥ =
√

α2 +
∑k

i=1 β
2
i .

▶ Notice that λ2 is not in the parameters of the minimization problem!
▶ Variables with minor contribution have their coefficients close to zero
▶ It improves prediction error by reducing overfitting through a bias-variance trade-off
▶ It is not a parsimonious method, i.e., does not reduce features
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Regularization methods: Lasso and Penalized
• Lasso (Least Absolute Shrinkage and Selection Operator) regression:

S(β) = ∥y − X · β∥2 + λ1∥β∥1
where ∥β∥1 = |α|+

∑k
i=1 |βi |.

▶ Notice that λ1 is not in the parameters of the minimization problem!
▶ Variable with minor contribution have their coefficients equal to zero
▶ It improves prediction error by reducing overfitting through a bias-variance trade-off
▶ It is a parsimonious method, i.e., it reduces the number of features

• Penalized linear regression:

S(β) = ∥y − X · β∥2 + λ2∥β∥2 + λ1∥β∥1
▶ Both Ridge and Lasso regularization parameters

• How to solve the minimization problems? Lagrange multiplier method or reduction to
Support Vector Machine learning

• How to find the best λ1 and/or λ2? Cross-validation!

See R script
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Towards logistic regression

• Consider a bivariate dataset
(x1, y1), . . . , (xn, yn)

where yi ∈ {0, 1}, i.e., Yi is a binary variable

• Using directly linear regression:

Yi = α+ βxi + Ui

results in poor performances (R2)

See R script
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Towards logistic regression

• Consider a bivariate dataset
(x1, y1), . . . , (xn, yn)

where yi ∈ {0, 1}, i.e., Yi i binary variable

• Group by x values:
(d1, f1), . . . , (dm, fm)

where d1, . . . , dm are the distinct values of x1, . . . , xn and fi is the fraction of 1’s:

fi =
|{j ∈ [1, n] | xj = di ∧ yj = 1}|

|{j ∈ [1, n] | xj = di}|

and the linear model (we continue using xi but it should be di ):

Fi = α+ βxi + Ui

See R script
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Towards logistic regression

• Rather than fi , we model the logit of fi

logit(Fi ) = α+ βxi + Ui

where logit and its inverse (logistic function) are:

logit(p) = log
p

1− p
inv .logit(x) =

ex

1 + ex
=

1

1 + e−x

• Why?
▶ Fi ∈ [0, 1] while the RHS is in R
▶ Relation between RHS and Fi is typically sigmoidal, not linear

See R script
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Logistic regression and generalized linear models

• Since Yi ’s are binary, Fi = P(Yi = 1|X = xi ) ∼ Ber(fi ), and Ui is not necessary

logit(Fi ) = α+ βxi

and then Fi = P(Yi = 1|X = xi ) = inv .logit(α+ βxi ) =
eα+βxi

1+eα+βxi

• Since Fi/(1− Fi ) = eα+βxi , β can be interpreted as:
▶ the expected change in log odds of having the outcome per unit change in X
▶ e.g., β = 0.38 in predicting heart disease from smoking: the smoking group has eβ = 1.46

times the odds of the non-smoking group of having heart disease
▶ e.g., α = −1.93 means the probability a non-smoker has heart disease is eα/(1 + eα) = 0.13.

• Generalized linear models: family = distribution + link function
▶ E.g., Binomial + logit for logistic regression
▶ For Yi ∈ {0, 1}, actually Bernoulli + logit [Binary logistic regression]

• Since distribution is known, MLE can be adopted for estimating α and β:

ℓ(α, β) =
n∑

i=1

[yi log (inv .logit(α+ βxi )) + (1− yi ) log (1− inv .logit(α+ βxi ))]

See R script 17 / 18



Elastic net logistic regression

• Penalized linear regression minimizes:

∥y − X · β∥2 + λ2∥β∥2 + λ1∥β∥1

▶ λ1 = 0 is the Ridge penalty
▶ λ2 = 0 is the Lasso penalty

• Elastic net regularization for logistic regression minimizes:

−ℓ(β) + λ

(
(1− α)

2
∥β∥2 + α∥β∥1

)
▶ α = 0 is the Ridge penalty
▶ α = 1 is the Lasso penalty
▶ λ is to be found, e.g., by cross-validation

See R script
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