Master Program in Data Science and Business Informatics Statistics for Data Science

Lesson 21 - Multiple, non-linear, and logistic regression

Salvatore Ruggieri
Department of Computer Science
University of Pisa, Italy
salvatore.ruggieri@unipi.it

Simple linear regression model

$$
\begin{aligned}
& \text { Simple Linear regression model. In a simple linear regression } \\
& \text { model for a bivariate dataset }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) \text {, we as- } \\
& \text { sume that } x_{1}, x_{2}, \ldots, x_{n} \text { are nonrandom and that } y_{1}, y_{2}, \ldots, y_{n} \text { are } \\
& \text { realizations of random variables } Y_{1}, Y_{2}, \ldots, Y_{n} \text { satisfying } \\
& \qquad Y_{i}=\alpha+\beta x_{i}+U_{i} \text { for } i=1,2, \ldots, n, \\
& \text { where } U_{1}, \ldots, U_{n} \text { are independent random variables with } \mathrm{E}\left[U_{i}\right]=0 \\
& \text { and } \operatorname{Var}\left(U_{i}\right)=\sigma^{2} .
\end{aligned}
$$

- Regression line: $y=\alpha+\beta x$ with intercept α and slope β
- Least Square Estimators: $\hat{\alpha}$ and $\hat{\beta}$ and $\hat{\sigma}^{2}$
- Unbiasedness: $E[\hat{\alpha}]=\alpha$ and $E[\hat{\beta}]=\beta$ and $E\left[\hat{\sigma}^{2}\right]=\sigma^{2}$
- Standard errors (estimates of $\sqrt{\operatorname{Var}(\hat{\alpha})}$ and $\sqrt{\operatorname{Var}(\hat{\beta})})$:

$$
\operatorname{se}(\hat{\alpha})=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\bar{x}_{n}^{2}}{S X X}\right)} \quad \operatorname{se}(\hat{\beta})=\frac{\hat{\sigma}}{\sqrt{S X X}}
$$

Standard error of fitted values (prediction \pm standard error)

- For a given x_{0}, the the estimator $\hat{Y}=\hat{\alpha}+\hat{\beta} x_{0}$ has expectation

$$
E[\hat{\gamma}]=E[\hat{\alpha}]+E[\hat{\beta}] x_{0}=\alpha+\beta x_{0}
$$

- Hence, \hat{Y} is unbiased, and $\hat{y}=\hat{\alpha}+\hat{\beta} x_{0}$ is the best estimate for the fitted value at x_{0}
- Variance of \hat{Y} is:
[See sds/n.pdf Chpt. 2]

$$
\operatorname{Var}(\hat{Y})=\sigma^{2}\left(\frac{1}{n}+\frac{\left(\bar{x}_{n}-x_{0}\right)^{2}}{S X X}\right)
$$

- The standard error of the fitted value is then the estimate:

$$
\operatorname{se}(\hat{y})=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\left(\bar{x}_{n}-x_{0}\right)^{2}}{S X X}\right)}
$$

where

$$
S X X=\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \quad \hat{\sigma}^{2}=\frac{1}{n-2} \sum_{1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2}
$$

- Prediction uncertainty at x_{0} is reported as $\hat{y} \pm \operatorname{se}(\hat{y})$

Weighted Least Squares and simple polynomial regression

- Weighted Simple Regression

$$
S(\alpha, \beta)=\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2} w_{i}
$$

- w_{i} is the weight (or importance) of observation $\left(x_{i}, y_{i}\right)$
- For natural number weights, it is the same as replicating instances
- Polynomial Simple Regression

$$
S(\alpha, \beta)=\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta_{1} x_{i}-\beta_{2} x_{i}^{2}-\ldots-\beta_{k} x_{i}^{k}\right)^{2}
$$

- $Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{k} x_{i}^{k}+U_{i}$ for $i=1,2, \ldots, n$
- May suffer from collinearity (see later in this slides)

See R script

Non-linear simple regression and transformably linear functions

- $Y_{i}=f\left(\alpha, \beta, x_{i}\right)+U_{i}$ for $i=1,2, \ldots, n$ for a non-linear function $f()$

$$
S(\alpha, \beta)=\sum_{i=1}^{n}\left(y_{i}-f\left(\alpha, \beta, x_{i}\right)\right)^{2}
$$

- $\arg \min _{\alpha, \beta} S(\alpha, \beta)$ may be without a closed form
- use numeric search of the minimum (which may fail to find it!), e.g., gradient descent
- Some $f()$ can be favourably transformed, e.g., $f\left(\alpha, \beta, x_{i}\right)=\alpha x_{i}^{\beta}$ (recall Power law, Zipf's)
- Solve $\log Y_{i}=\log \alpha+\beta \log x_{i}+U_{i}$
- Let $\log \hat{\alpha}$ and $\hat{\beta}$ be the LSE estimators. By exponentiation:

$$
Y_{i}=\hat{\alpha} x_{i}^{\hat{\beta}} e^{U_{i}}
$$

where the error term is a multiplicative factor

Multiple linear regression

- Multivariate dataset of observations:

$$
\left(x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{k}, y_{1}\right), \ldots,\left(x_{n}^{1}, x_{n}^{2}, \ldots, x_{n}^{k}, y_{n}\right)
$$

- $Y_{i}=\alpha+\beta_{1} x_{i}^{1}+\ldots+\beta_{k} x_{i}^{k}+U_{i}$
- In vector terms:
- $Y_{i}=\boldsymbol{x}_{i} \cdot \boldsymbol{\beta}^{T}+U_{i}$, where $\boldsymbol{\beta}=\left(\alpha, \beta_{1}, \ldots, \beta_{k}\right)$ and $\boldsymbol{x}_{i}=\left(1, x_{i}^{1}, \ldots, x_{i}^{k}\right)$ the $i^{t h}$ observation
- $\boldsymbol{Y}=\boldsymbol{X} \cdot \boldsymbol{\beta}^{T}+\boldsymbol{U}$, where $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right), \boldsymbol{U}=\left(U_{1}, \ldots, U_{n}\right)$, and $\boldsymbol{X}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$
- Ordinary Least Square Estimation (OLS):

$$
S(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i} \cdot \boldsymbol{\beta}^{T}\right)^{2}=\left\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}^{T}\right\|^{2} \quad \hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta}} S(\boldsymbol{\beta})=\left(\boldsymbol{X}^{T} \cdot \boldsymbol{X}\right)^{-1} \cdot \boldsymbol{X}^{T} \cdot \boldsymbol{y}
$$

where $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ and $\left\|\left(v_{1}, \ldots, v_{n}\right)\right\|=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$ is the Euclidian norm

- Meaning of β_{i} : change of Y due to a unit change in x_{i} all the x_{j} with $j \neq i$ unchanged!
- It is a Minimum Variance linear Unbiased Estimator
[Gauss-Markov Thm.]

Multivariate linear regression

- The multivariate linear model accommodates two or more dependent variables

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}^{T}+\boldsymbol{U}
$$

where

- \boldsymbol{Y} is $n \times m$: n observations, m dependent variables
- \boldsymbol{X} is $n \times(k+1)$: n observations, k independent variables +1 constants
- $\boldsymbol{\beta}^{T}$ is $(k+1) \times m$: parameters for each of the m dependent variables
- \boldsymbol{U} is $n \times m$: n observations, m error terms
- It is not just a collection of m multiple linear regressions
- Errors in rows (observations) of \boldsymbol{U} are independent, as in a single multiple linear regression
- Errors in columns (dependent variables) are allowed to be correlated.
- E.g., errors of plasma level and amitriptyline due to usage of drugs
- Hence, coefficients from the models covary!
See R script

Other variants and generalizations

- Heteroscedastic linear models
- Relax the assumption of equal variances $\operatorname{Var}\left(U_{i}\right)=\sigma^{2}$
- Generalized least squares
- U_{1}, \ldots, U_{n} not necessarily independent
- Hierarchical linear models
- Nested or cluster organization (e.g., Children within classrooms within schools)
- See this intro in \mathbf{R}
- Generalized linear models
- We'll see next at Logistic Regression
- Tobit regression
- Censored dependent variable, e.g., income cannot be negative
- Truncated regression model
- Dependent variable not available/sampled, e.g., income above a poverty threshold
- Quantile regression
- Estimate of the median (or other quantiles) instead of the mean, as in regression

Issues: Omitted variable bias

- Suppose we omit a variable z_{i} that belongs to the true model

$$
Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} z_{i}+U_{i}
$$

with $\beta_{2} \neq 0$ (i.e., Y is determined by Z)

- Under-specification of the model, due to lack of data
- Fitted model $Y_{i}=\alpha+\beta_{1} x_{i}+U_{i}^{\prime}$
- Hence, $E\left[U_{i}^{\prime}\right]=E\left[\beta_{2} z_{i}+U_{i}\right]=\beta_{2} z_{i}+E\left[U_{i}\right]=\beta_{2} z_{i} \neq 0$
- Let $\hat{\alpha}$ and $\hat{\beta}_{1}$ be the LSE estimators of the fitted model:

$$
E\left[\hat{\beta_{1}}\right]=\beta_{1}+\beta_{2} \delta \quad \operatorname{Bias}\left(\hat{\beta_{1}}\right)=\beta_{2} \delta
$$

where δ is the slope of the regression of $z_{i}=\gamma+\delta x_{i}+U_{i}^{\prime \prime}$, i.e.:

$$
\delta=r_{x z} \frac{s_{z}}{s_{x}}
$$

- $\operatorname{Bias}\left(\hat{\beta}_{1}\right) \neq 0$ if X and Z correlated

Issues: Multi-collinearity and variance inflation factors

- Multicollinearity: two or more independent variables (regressors) are strongly correlated.
- $Y_{i}=\alpha+\beta_{1} x_{i}^{1}+\beta_{2} x_{i}^{2}+U_{i}$
- It can be shown that for $j \in\{1,2\}$:

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{1}{\left(1-r^{2}\right)} \cdot \frac{\sigma^{2}}{S X X_{j}}
$$

where $r=\operatorname{cor}\left(x^{1}, x^{2}\right), \sigma^{2}=\operatorname{Var}\left(U_{i}\right)$ and $S X X_{j}=\sum_{1}^{n}\left(x_{i}^{j}-\bar{x}_{n}^{j}\right)^{2}$

- Correlation between regressors increases the variance of the estimators
- In general, for more than 2 variables:

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{1}{\left(1-R_{j}^{2}\right)} \cdot \frac{\sigma^{2}}{S X X_{j}}
$$

where R_{j}^{2} is the coefficient of determination $\left(R^{2}\right)$ in the regression of x_{j} from all other x_{i} 's.

- The term $1 /\left(1-R_{j}^{2}\right)$ is called variance inflation factor See R script

Variable selection

- Recall: when $U_{i} \sim N\left(0, \sigma^{2}\right)$, we have $Y_{i} \sim N\left(\boldsymbol{x}_{i} \cdot \boldsymbol{\beta}, \sigma^{2}\right)$, hence we can apply MLE
- Log-likelihood is $\ell(\boldsymbol{\beta})=\sum_{i=1}^{n} \log \left(\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{y_{i}-x_{i} ; \beta}{\sigma^{2}}\right)^{2}}\right)$
- Akaike information criterion (AIC), balances model fit against model simplicity

$$
A I C(\boldsymbol{\beta})=2|\boldsymbol{\beta}|-2 \ell(\boldsymbol{\beta})
$$

- stepAIC(model, direction=" backward") algorithm

1. $S=\left\{x^{1}, \ldots, x^{k}\right\}$
2. $b=A I C(S)$
3. repeat
$3.1 x=\arg \min _{x \in S} \operatorname{AIC}(S \backslash\{x\})$
$3.2 v=\operatorname{AIC}(S \backslash\{x\})$
3.3 if $v<b$ then $S, b=S \backslash\{x\}, v$
4. until no change in S
5. return S

Regularization methods: Ridge/Tikhonov

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} S(\boldsymbol{\beta})
$$

- Ordinary Least Square Estimation (OLS):

$$
S(\boldsymbol{\beta})=\|\boldsymbol{y}-\boldsymbol{x} \cdot \boldsymbol{\beta}\|^{2}
$$

where $\left\|\left(v_{1}, \ldots, v_{n}\right)\right\|=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$ is the Euclidian norm

- Performs poorly as for prediction (overfitting) and interpretability (number of variables)
- Ridge regression:

$$
S(\boldsymbol{\beta})=\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2}+\lambda_{2}\|\boldsymbol{\beta}\|^{2}
$$

where $\|\boldsymbol{\beta}\|=\sqrt{\alpha^{2}+\sum_{i=1}^{k} \beta_{i}^{2}}$.

- Notice that λ_{2} is not in the parameters of the minimization problem!
- Variables with minor contribution have their coefficients close to zero
- It improves prediction error by reducing overfitting through a bias-variance trade-off
- It is not a parsimonious method, i.e., does not reduce features

Regularization methods: Lasso and Penalized

- Lasso (Least Absolute Shrinkage and Selection Operator) regression:

$$
S(\boldsymbol{\beta})=\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}
$$

where $\|\boldsymbol{\beta}\|_{1}=|\alpha|+\sum_{i=1}^{k}\left|\beta_{i}\right|$.

- Notice that λ_{1} is not in the parameters of the minimization problem!
- Variable with minor contribution have their coefficients equal to zero
- It improves prediction error by reducing overfitting through a bias-variance trade-off
- It is a parsimonious method, i.e., it reduces the number of features
- Penalized linear regression:

$$
S(\boldsymbol{\beta})=\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2}+\lambda_{2}\|\boldsymbol{\beta}\|^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}
$$

- Both Ridge and Lasso regularization parameters
- How to solve the minimization problems? Lagrange multiplier method or reduction to Support Vector Machine learning
- How to find the best λ_{1} and/or λ_{2} ? Cross-validation!

Towards logistic regression

- Consider a bivariate dataset

$$
\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where $y_{i} \in\{0,1\}$, i.e., Y_{i} is a binary variable

- Using directly linear regression:

$$
Y_{i}=\alpha+\beta x_{i}+U_{i}
$$

results in poor performances $\left(R^{2}\right)$

Towards logistic regression

- Consider a bivariate dataset

$$
\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where $y_{i} \in\{0,1\}$, i.e., Y_{i} i binary variable

- Group by x values:

$$
\left(d_{1}, f_{1}\right), \ldots,\left(d_{m}, f_{m}\right)
$$

where d_{1}, \ldots, d_{m} are the distinct values of x_{1}, \ldots, x_{n} and f_{i} is the fraction of 1 's:

$$
f_{i}=\frac{\left|\left\{j \in[1, n] \mid x_{j}=d_{i} \wedge y_{j}=1\right\}\right|}{\left|\left\{j \in[1, n] \mid x_{j}=d_{i}\right\}\right|}
$$

and the linear model (we continue using x_{i} but it should be d_{i}):

$$
F_{i}=\alpha+\beta x_{i}+U_{i}
$$

See R script

Towards logistic regression

- Rather than f_{i}, we model the logit of f_{i}

$$
\operatorname{logit}\left(F_{i}\right)=\alpha+\beta x_{i}+U_{i}
$$

where logit and its inverse (logistic function) are:

$$
\operatorname{logit}(p)=\log \frac{p}{1-p} \quad \operatorname{inv} \cdot \operatorname{logit}(x)=\frac{e^{x}}{1+e^{x}}=\frac{1}{1+e^{-x}}
$$

- Why?
- $F_{i} \in[0,1]$ while the RHS is in \mathbb{R}
- Relation between RHS and F_{i} is typically sigmoidal, not linear

Logistic regression and generalized linear models

- Since Y_{i} 's are binary, $F_{i}=P\left(Y_{i}=1 \mid X=x_{i}\right) \sim \operatorname{Ber}\left(f_{i}\right)$, and U_{i} is not necessary

$$
\operatorname{logit}\left(F_{i}\right)=\alpha+\beta x_{i}
$$

and then $F_{i}=P\left(Y_{i}=1 \mid X=x_{i}\right)=\operatorname{inv} \cdot \operatorname{logit}\left(\alpha+\beta x_{i}\right)=\frac{e^{\alpha+\beta x_{i}}}{1+e^{\alpha+\beta x_{i}}}$

- Since $F_{i} /\left(1-F_{i}\right)=e^{\alpha+\beta x_{i}}, \beta$ can be interpreted as:
- the expected change in log odds of having the outcome per unit change in X
- e.g., $\beta=0.38$ in predicting heart disease from smoking: the smoking group has $e^{\beta}=1.46$ times the odds of the non-smoking group of having heart disease
- e.g., $\alpha=-1.93$ means the probability a non-smoker has heart disease is $e^{\alpha} /\left(1+e^{\alpha}\right)=0.13$.
- Generalized linear models: family = distribution + link function
- E.g., Binomial + logit for logistic regression
- For $Y_{i} \in\{0,1\}$, actually Bernoulli + logit
[Binary logistic regression]
- Since distribution is known, MLE can be adopted for estimating α and β :

$$
\ell(\alpha, \beta)=\sum_{i=1}^{n}\left[y_{i} \log \left(i n v \cdot \operatorname{logit}\left(\alpha+\beta x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-i n v \cdot \operatorname{logit}\left(\alpha+\beta x_{i}\right)\right)\right]
$$

Elastic net logistic regression

- Penalized linear regression minimizes:

$$
\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2}+\lambda_{2}\|\boldsymbol{\beta}\|^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}
$$

- $\lambda_{1}=0$ is the Ridge penalty
- $\lambda_{2}=0$ is the Lasso penalty
- Elastic net regularization for logistic regression minimizes:

$$
-\ell(\boldsymbol{\beta})+\lambda\left(\frac{(1-\alpha)}{2}\|\boldsymbol{\beta}\|^{2}+\alpha\|\boldsymbol{\beta}\|_{1}\right)
$$

- $\alpha=0$ is the Ridge penalty
- $\alpha=1$ is the Lasso penalty
- λ is to be found, e.g., by cross-validation

$$
\text { See } R \text { script }
$$

