Master Program in *Data Science and Business Informatics* **Statistics for Data Science** Lesson 21 - Multiple, non-linear, and logistic regression

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression model for a bivariate dataset $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, we assume that x_1, x_2, \ldots, x_n are nonrandom and that y_1, y_2, \ldots, y_n are realizations of random variables Y_1, Y_2, \ldots, Y_n satisfying

$$Y_i = \alpha + \beta x_i + U_i \quad \text{for } i = 1, 2, \dots, n,$$

where U_1, \ldots, U_n are *independent* random variables with $E[U_i] = 0$ and $Var(U_i) = \sigma^2$.

- Regression line: $y = \alpha + \beta x$ with intercept α and slope β
- Least Square Estimators: $\hat{\alpha}$ and $\hat{\beta}$ and $\hat{\sigma}^2$
- Unbiasedness: $E[\hat{\alpha}] = \alpha$ and $E[\hat{\beta}] = \beta$ and $E[\hat{\sigma}^2] = \sigma^2$
- Standard errors (estimates of $\sqrt{Var(\hat{lpha})}$ and $\sqrt{Var(\hat{eta})}$:

$$se(\hat{\alpha}) = \hat{\sigma}\sqrt{(rac{1}{n} + rac{ar{x}_n^2}{SXX})}$$
 $se(\hat{\beta}) = rac{\hat{\sigma}}{\sqrt{SXX}}$

Standard error of fitted values (prediction \pm standard error)

• For a given x_0 , the the estimator $\hat{Y} = \hat{lpha} + \hat{eta} x_0$ has expectation

$$E[\hat{Y}] = E[\hat{\alpha}] + E[\hat{\beta}]x_0 = \alpha + \beta x_0$$

- Hence, \hat{Y} is unbiased, and $\hat{y} = \hat{lpha} + \hat{eta} x_0$ is the best estimate for the fitted value at x_0
- Variance of \hat{Y} is: [See sdsIn.pdf Chpt. 2]

$$Var(\hat{Y}) = \sigma^2(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})$$

• The standard error of the fitted value is then the estimate:

$$se(\hat{y}) = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX}\right)}$$

where

$$SXX = \sum_{1}^{n} (x_i - \bar{x}_n)^2$$
 $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$

• Prediction uncertainty at x_0 is reported as $\hat{y} \pm se(\hat{y})$

Weighted Least Squares and simple polynomial regression

• Weighted Simple Regression

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 w_i$$

- w_i is the weight (or importance) of observation (x_i, y_i)
- For natural number weights, it is the same as replicating instances
- Polynomial Simple Regression

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta_1 x_i - \beta_2 x_i^2 - \ldots - \beta_k x_i^k)^2$$

- $Y_i = \alpha + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_k x_i^k + U_i$ for $i = 1, 2, \ldots, n$
- May suffer from collinearity (see later in this slides)

Non-linear simple regression and transformably linear functions

• $Y_i = f(\alpha, \beta, x_i) + U_i$ for i = 1, 2, ..., n for a non-linear function f()

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - f(\alpha,\beta,x_i))^2$$

• arg min $_{\alpha,\beta}$ $S(\alpha,\beta)$ may be without a closed form

- ▶ use numeric search of the minimum (which may fail to find it!), e.g., gradient descent
- Some f() can be favourably transformed, e.g., $f(\alpha, \beta, x_i) = \alpha x_i^{\beta}$ (recall Power law, Zipf's)

• Solve
$$\log Y_i = \log \alpha + \beta \log x_i + U_i$$

[Linearization]

• Let $\log \hat{\alpha}$ and $\hat{\beta}$ be the LSE estimators. By exponentiation:

$$Y_i = \hat{\alpha} x_i^{\hat{\beta}} e^{U_i}$$

where the error term is a multiplicative factor

Multiple linear regression

• Multivariate dataset of observations:

$$(x_1^1, x_1^2, \ldots, x_1^k, y_1), \ldots, (x_n^1, x_n^2, \ldots, x_n^k, y_n)$$

- $Y_i = \alpha + \beta_1 x_i^1 + \ldots + \beta_k x_i^k + U_i$
- In vector terms:
 - $Y_i = \mathbf{x}_i \cdot \boldsymbol{\beta}_{\tau}^T + U_i$, where $\boldsymbol{\beta} = (\alpha, \beta_1, \dots, \beta_k)$ and $\mathbf{x}_i = (1, x_i^1, \dots, x_i^k)$ the *i*th observation
 - ► $\boldsymbol{Y} = \boldsymbol{X} \cdot \boldsymbol{\beta}^T + \boldsymbol{U}$, where $\boldsymbol{Y} = (Y_1, \dots, Y_n)$, $\boldsymbol{U} = (U_1, \dots, U_n)$, and $\boldsymbol{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$

• Ordinary Least Square Estimation (OLS):

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i \cdot \boldsymbol{\beta}^{\mathsf{T}})^2 = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}^{\mathsf{T}}\|^2 \qquad \hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} S(\boldsymbol{\beta}) = (\boldsymbol{X}^{\mathsf{T}} \cdot \boldsymbol{X})^{-1} \cdot \boldsymbol{X}^{\mathsf{T}} \cdot \boldsymbol{y}$$

where $m{y}=(y_1,\ldots,y_n)$ and $\|(v_1,\ldots,v_n)\|=\sqrt{\sum_{i=1}^n v_i^2}$ is the Euclidian norm

- Meaning of β_i : change of Y due to a unit change in x_i all the x_j with $j \neq i$ unchanged!
- It is a Minimum Variance linear Unbiased Estimator

[Gauss-Markov Thm.]

Multivariate linear regression

• The multivariate linear model accommodates two or more dependent variables

$$\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta}^{T} + \boldsymbol{U}$$

where

- **Y** is $n \times m$: *n* observations, *m* dependent variables
- **X** is $n \times (k+1)$: *n* observations, *k* independent variables +1 constants
- β^T is $(k+1) \times m$: parameters for each of the *m* dependent variables
- **U** is $n \times m$: *n* observations, *m* error terms
- It is **not** just a collection of *m* multiple linear regressions
- Errors in rows (observations) of \boldsymbol{U} are independent, as in a single multiple linear regression
- Errors in columns (dependent variables) are allowed to be correlated.
 - E.g., errors of plasma level and amitriptyline due to usage of drugs
 - Hence, coefficients from the models covary!

Other variants and generalizations

- Heteroscedastic linear models
 - Relax the assumption of equal variances $Var(U_i) = \sigma^2$
- Generalized least squares
 - U_1, \ldots, U_n not necessarily independent
- Hierarchical linear models
 - ▶ Nested or cluster organization (e.g., Children within classrooms within schools)
 - See this intro in R
- Generalized linear models
 - ► We'll see next at Logistic Regression
- Tobit regression
 - Censored dependent variable, e.g., income cannot be negative
- Truncated regression model
 - ▶ Dependent variable not available/sampled, e.g., income above a poverty threshold
- Quantile regression
 - ▶ Estimate of the median (or other quantiles) instead of the mean, as in regression

Issues: Omitted variable bias

• Suppose we omit a variable z_i that belongs to the true model

 $Y_i = \alpha + \beta_1 x_i + \beta_2 z_i + U_i$

with $\beta_2 \neq 0$ (i.e., Y is determined by Z)

- Under-specification of the model, due to lack of data
- Fitted model $Y_i = \alpha + \beta_1 x_i + U'_i$
 - Hence, $E[U'_i] = E[\beta_2 z_i + U_i] = \beta_2 z_i + E[U_i] = \beta_2 z_i \neq 0$
- Let $\hat{\alpha}$ and $\hat{\beta}_1$ be the LSE estimators of the fitted model:

$$E[\hat{eta_1}] = eta_1 + eta_2 \delta$$
 $Bias(\hat{eta_1}) = eta_2 \delta$

where δ is the slope of the regression of $z_i = \gamma + \delta x_i + U''_i$, i.e.:

$$\delta = r_{xz} \frac{s_z}{s_x}$$

• $Bias(\hat{\beta}_1) \neq 0$ if X and Z correlated

Issues: Multi-collinearity and variance inflation factors

- Multicollinearity: two or more independent variables (regressors) are strongly correlated.
- $Y_i = \alpha + \beta_1 x_i^1 + \beta_2 x_i^2 + U_i$
- It can be shown that for $j \in \{1, 2\}$:

$$Var(\hat{eta}_j) = rac{1}{(1-r^2)} \cdot rac{\sigma^2}{SXX_j}$$

where $r = cor(x^1, x^2)$, $\sigma^2 = Var(U_i)$ and $SXX_j = \sum_{i=1}^{n} (x_i^j - \bar{x}_n^j)^2$

- Correlation between regressors increases the variance of the estimators
- In general, for more than 2 variables:

$$extsf{Var}(\hat{eta}_j) = rac{1}{(1-R_j^2)} \cdot rac{\sigma^2}{ extsf{SXX}_j}$$

where R_j^2 is the coefficient of determination (R^2) in the regression of x_j from all other x_i 's.

• The term $1/(1-R_j^2)$ is called variance inflation factor

Variable selection

- Recall: when $U_i \sim N(0, \sigma^2)$, we have $Y_i \sim N(\mathbf{x}_i \cdot \boldsymbol{\beta}, \sigma^2)$, hence we can apply MLE
- Log-likelihood is $\ell(\beta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y_i \mathbf{x}_i \cdot \beta}{\sigma^2}\right)^2}\right)$
- Akaike information criterion (AIC), balances model fit against model simplicity

$$AIC(eta) = 2|eta| - 2\ell(eta)$$

- stepAIC(model, direction="backward") algorithm
 - 1. $S = \{x^1, \dots, x^k\}$

$$2. \ b = AIC(S)$$

- 3. repeat
 - 3.1 $x = \arg \min_{x \in S} AIC(S \setminus \{x\})$ 3.2 $v = AIC(S \setminus \{x\})$ 3.3 if v < b then $S, b = S \setminus \{x\}, v$
- 4. until no change in S
- 5. return S

Regularization methods: Ridge/Tikhonov

$$\hat{oldsymbol{eta}} = rg\min_{oldsymbol{eta}} S(oldsymbol{eta})$$

• Ordinary Least Square Estimation (OLS):

$$S(oldsymbol{eta}) = \|oldsymbol{y} - oldsymbol{X} \cdot oldsymbol{eta}\|^2$$

where $\|(v_1,\ldots,v_n)\| = \sqrt{\sum_{i=1}^n v_i^2}$ is the Euclidian norm

- Performs poorly as for prediction (overfitting) and interpretability (number of variables)
- Ridge regression:

$$S(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}\|^2 + \lambda_2 \|\boldsymbol{\beta}\|^2$$

where $\|\boldsymbol{\beta}\| = \sqrt{\alpha^2 + \sum_{i=1}^k \beta_i^2}$.

- Notice that λ_2 is not in the parameters of the minimization problem!
- ► Variables with minor contribution have their coefficients close to zero
- It improves prediction error by reducing overfitting through a bias-variance trade-off
- It is not a parsimonious method, i.e., does not reduce features

Regularization methods: Lasso and Penalized

• Lasso (Least Absolute Shrinkage and Selection Operator) regression:

$$S(\boldsymbol{eta}) = \| \boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{eta} \|^2 + \lambda_1 \| \boldsymbol{eta} \|_1$$

where $\|\beta\|_{1} = |\alpha| + \sum_{i=1}^{k} |\beta_{i}|$.

- ▶ Notice that λ_1 is not in the parameters of the minimization problem!
- ► Variable with minor contribution have their coefficients **equal** to zero
- ▶ It improves prediction error by reducing overfitting through a bias-variance trade-off
- ▶ It is a parsimonious method, i.e., it reduces the number of features
- Penalized linear regression:

$$\mathcal{S}(oldsymbol{eta}) = \|oldsymbol{y} - oldsymbol{X} \cdot oldsymbol{eta}\|^2 + \lambda_2 \|oldsymbol{eta}\|^2 + \lambda_1 \|oldsymbol{eta}\|_1$$

- Both Ridge and Lasso regularization parameters
- How to solve the minimization problems? Lagrange multiplier method or reduction to Support Vector Machine learning
- How to find the best λ_1 and/or λ_2 ? Cross-validation!

Towards logistic regression

• Consider a bivariate dataset

$$(x_1, y_1), \ldots, (x_n, y_n)$$

where $y_i \in \{0, 1\}$, i.e., Y_i is a binary variable

• Using directly linear regression:

$$Y_i = \alpha + \beta x_i + U_i$$

results in poor performances (R^2)

Towards logistic regression

• Consider a bivariate dataset

$$(x_1, y_1), \ldots, (x_n, y_n)$$

where $y_i \in \{0, 1\}$, i.e., Y_i i binary variable

• Group by *x* values:

$$(d_1, f_1), \ldots, (d_m, f_m)$$

where d_1, \ldots, d_m are the distinct values of x_1, \ldots, x_n and f_i is the fraction of 1's:

$$f_i = \frac{|\{j \in [1, n] \mid x_j = d_i \land y_j = 1\}|}{|\{j \in [1, n] \mid x_j = d_i\}|}$$

and the linear model (we continue using x_i but it should be d_i):

$$F_i = \alpha + \beta x_i + U_i$$

Towards logistic regression

• Rather than f_i , we model the logit of f_i

$$logit(F_i) = \alpha + \beta x_i + U_i$$

where logit and its inverse (logistic function) are:

• Why?

- $F_i \in [0, 1]$ while the RHS is in \mathbb{R}
- Relation between RHS and F_i is typically sigmoidal, not linear

Logistic regression and generalized linear models

• Since Y_i 's are binary, $F_i = P(Y_i = 1 | X = x_i) \sim Ber(f_i)$, and U_i is not necessary

$$logit(F_i) = \alpha + \beta x_i$$

and then $F_i = P(Y_i = 1 | X = x_i) = inv.logit(\alpha + \beta x_i) = \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}$

- Since $F_i/(1-F_i) = e^{\alpha+\beta x_i}$, β can be interpreted as:
 - the expected change in log odds of having the outcome per unit change in X
 - e.g., β = 0.38 in predicting heart disease from smoking: the smoking group has e^β = 1.46 times the odds of the non-smoking group of having heart disease
 - e.g., $\alpha = -1.93$ means the probability a non-smoker has heart disease is $e^{\alpha}/(1 + e^{\alpha}) = 0.13$.
- Generalized linear models: family = distribution + link function
 - E.g., Binomial + logit for logistic regression
 - ▶ For $Y_i \in \{0, 1\}$, actually Bernoulli + logit [Binary logistic regression]
- Since distribution is known, MLE can be adopted for estimating α and β :

$$\ell(\alpha,\beta) = \sum_{i=1}^{n} \left[y_i \log \left(inv.logit(\alpha + \beta x_i) \right) + (1 - y_i) \log \left(1 - inv.logit(\alpha + \beta x_i) \right) \right]$$

See R script

Elastic net logistic regression

• Penalized linear regression minimizes:

$$\|oldsymbol{y} - oldsymbol{X} \cdot oldsymbol{eta}\|^2 + \lambda_2 \|oldsymbol{eta}\|^2 + \lambda_1 \|oldsymbol{eta}\|_1$$

- $\lambda_1 = 0$ is the Ridge penalty
- $\lambda_2 = 0$ is the Lasso penalty
- Elastic net regularization for logistic regression minimizes:

$$-\ell(\boldsymbol{\beta}) + \lambda \left(\frac{(1-\alpha)}{2} \|\boldsymbol{\beta}\|^2 + \alpha \|\boldsymbol{\beta}\|_1\right)$$

- $\alpha = 0$ is the Ridge penalty
- $\alpha = 1$ is the Lasso penalty
- $\blacktriangleright~\lambda$ is to be found, e.g., by cross-validation