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Bivariate dataset

® Consider a bivariate dataset
(X17y1)7 M (Xna.yn)

® |t can be visualized in a scatter plot
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® This suggests a relation Hardness = « + - Density + random fluctuation
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Simple linear regression model

SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression

model for a bivariate dataset (x1,91).(T2,92)s .-, (Tn,Yn), We as-
sume that x1,2s,...,2, are nonrandom and that yi,ys,...,y, are
realizations of random variables Y7, Ys, ..., Y, satisfying

Yi=a+px; +U; fori=1,2,...,n,

where Uy, ..., U,, are independent random variables with E[U;] = 0

and Var(U;) = 2.

® Regression line: y = a4+ Bx with intercept « and slope (3

® x is the explanatory (or independent) variable, and y the response (or dependent) variable

® Independence of Uy, ..., U, implies independence of Yi,..., Y}, [propagation of ind.]
» But Y;'s are not identically distributes, as E[Y;] = a + Bx;

® Also, notice the assumption Var(Y;) = Var(U;) = o2 [homoscedasticity]
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Estimation of parameters

® How to estimate v and 37 MLE requires to know the distribution of the U;'s

The point (xi, i) N T NThe regression
.

liney =ax =7

I T 1
T;

® y, —«a— f(x; is called a residual (or the error), and it is a realization of U; = Y; — a — Bx;
» recall that E[U;] = 0 and Var(U;) = E[U?] = o2
® The method of Least Squares prescribes to minimize the sum of squares of residuals:

A, B = inS(a, here S( i — o — Bx;
a, 3 argrlll[? (o, B) where S(a, 5) = Z(y o — Bx;)?

S(a, B) also called Sum of Squares of Errors (SSE) or Resndual Sum of Squares (RSS)
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Least Squares Estimates

S(a, B) = _Z( i —a — Bx;)?

® Partial derivatives:

dd 22 — o — [x;) S(aﬂ 22 —a — BXi)x;
i=1

3

® Fqual to 0 for:
n n n
SR ST SURNIES JRRT) I pi
i=1 i=1 i=1 i=1 i=1

and solving, we get:

A_ o A A na i xiyi — (i xi) (i vi)
a = Yp BXn 5 — ”27:1 Xi2 — (27:1 X,')2

= & + [(x; are called the fitted values 5/16
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Ordinary Least Squares (OLS) Estimates
_ Xy xivi = (0 i) (i, i)

n 27:1 Xi2 - (27:1 x;)?

e Equivalent form of /3 [prove it!]

where:
» SXX =Y 1(xi — X,)?
>y (i —%n)-(¥i—Fn)
\/27:1(Xr'*)_(n)z‘z;’:1(yf7)_’n)2

> 5 = \/ﬁ S (xi — X,)? is the sample standard deviations of x;'s

>y = is the Pearson's correlation coefficient

> 5, = \/ﬁ S0 (vi — ¥a)? is the sample standard deviations of y;'s

e The line y = & + (3x always passes through the center of gravity (Xn, ¥n)
» Since & = y, — (%, we have & + 3%, = ¥ — A%y + ARy = Vi
See R script

6/16



Why 'regression’ ?

So, why is it called 'regression’ anyway?
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“See Francis Galton concluded that as heights of the parents deviated from the average

height, [...] the heights of the children regressed to the average height of an adult.”
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https://blog.minitab.com/en/statistics-and-quality-data-analysis/so-why-is-it-called-regression-anyway
https://en.wikipedia.org/wiki/Francis_Galton
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Unbiasedness of estimators:

® Consider the least square estimators:

06— RV Vi)

o = Yn - /BXn /8 SXX
where SXX = 37(x; — %,)2. Since 3.7(x; — X,) = O,we can rewrite 3 as:
b= > 1(xi = %n) Yi = 321 (% — %n) Yo _ 321(%i — %a) Vi (1)
SXX SXX

® \We have:

A~ ZH(X,- — )?n)E[Y,] ZH(X,' — )_(n)(Oé + BX,') 5 En(Xi - )?n)xi
EPl = =gy == o = ox

where the last step follows since Y 7(xj — Xn)xi = .1 (Xi — Xn)Xi — >_1(Xi — Xn)Xn = SXX.

® Moreover: N — n _ 2 5
Var(f) = >_1(xi — Xp)~Var(Y) — 52 >_1(xi — Xn) _ 9
SXX? SXX? SXX
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Unbiasedness of estimators: &

® (Consider the least square estimators:

5 ila—%)(Yi— V)

&= Yo = B SXX
® \We have:
_ A 1
Ela - EYn__nE = - EYi__n
A = EV = %E = L3 Elv] -5
1« _ _ _
= D (a+Bx) —Ff = a+ T — 5B =0
i=1
® Moreover:

. _ R _ oA 1 X2
Var(&) = Var(Yy — %) = Var(Vy) + X2 Var(B) — 25 Cov(Ya, ) = 0*( + £5)

where Cov( \7,,,3) =0 [prove it or see sdsIn.pdf Chpt. 2]
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An estimator for 02, and standard errors

® Var(&) and Var(j3) use o2, which is unknown

® \We cannot use ﬁ S1(Y; — Y,)? as an estimator of 02, because E[Y;] is not constant

® An unbiased estimate of o2 is:

1 < .
A2 LA )2
g T h_»o El (yl @ ﬂxl)

& is called the residual standard error. A close measure is the Root Mean Squared Error:

n

1 .
RMSE = J - > (yi = é = Bxi)?

1

® The standard errors of the coefficient estimators are defined as the estimates of the standard

deviations:
. . /1 X2 A0
se(d) =6 (; + SXX) se(B) = Tox
See R script
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LSE: Relation with MLE

Yi=a+pxi+ U

® In case U; ~ N(0,0?), we have Y; ~ N(a + Bx;,02)
® | og-likelihood is

1(yi—a—Bx

o, 8) = Y0y log (e (7o) ) = “nlog (0v2R) — 5 Y0 — o — Bx)?

® |t turns out that arg max, g {(a, f) = &, B

[same estimators as LSE]
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Total variability = explained variability + unexplained variability

Total variability in the data. Sum of Squares Total (SST):
SST = zn:()/i - }_/n)2
1
Variability explained by regression. Sum of Squares of Regression (SSR):
SSR = 2”:(& + Bxi — §a)? = Z(}A/i — n)?
1

because }:/n = % Z;(d + BXI') =a+ ﬁﬁn = Vn
Unexplained variability. Sum of Squares of Errors (SSE):

n

N

SSE = (yi — & — Bx;)?
1
It turns out: SST = SSR + SSE [Prove it!]
1 — SSE/SST (or SSR/SST) is the fraction of explained variability over total variability
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Residuals and R? (fraction of explained variability)

® 1 — SSE/SST (or SSR/SST) is the fraction of explained variability over total variability

® When taking empirical variances:

SST 1 < N SSE
y:n,lz(% Ynz— n_1 O'Ees:mz(y"_y")zznf]_
1
we define the coefficient of determination R*> =1 — o7, /o>,

1\ A By —
» Exercise: show o2, is the empirical variance of residuals, i.e., £ 3" 7(y; — & — fx) =0

® Using the variance of the fitted:

1 = SSR
2 _ 6 T2
Uy_n—lzlj(y’ Va) n—1
alternative definition is R*> = o3 /o7
® For simple (one independent r.v.) linear regression: [Prove it!]
R2— 2 — oy (i = 7a) - (9 = 9)?

Y i = In)? (9 — In)?
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Adjusted R?

® 1 — SSE/SST (or SSR/SST) is the fraction of explained variability over total variability

® When taking adjusted variances:

1< SST SSE
2 _ o2 52 )2 =
Jy*n—lz:(y’ Wy = 21: n-2
(where & is the residual standard error), we define the adjusted coefficient of determination
~2 2 -1
adiR? =1- 2 —1- ="
oy Gy n—2
See R script
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Anscombe’s quartet
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® Same regression line y =3 + x/2

v

Top left: linear regression

» Top right: non-linear regression

» Bottom left: linear regression with outliers (requires robust regression approaches)
» Bottom right: single high-leverage point produces correlation

® ook at data graphically before starting to analyze them with a specific technique!
See R script 15,16


https://en.wikipedia.org/wiki/Leverage_(statistics)

Optional references

@ Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William Li (2005)
Applied Linear Statistical Models.
5th editionMcGraw-Hill
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