Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 20 - Linear Regression and Least Squares Estimation

Salvatore Ruggieri

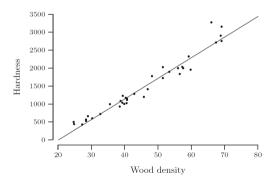
Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Bivariate dataset

• Consider a bivariate dataset

$$(x_1,y_1),\ldots,(x_n,y_n)$$

• It can be visualized in a scatter plot



• This suggests a relation $Hardness = \alpha + \beta \cdot Density + random fluctuation$

Simple linear regression model

SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression model for a bivariate dataset $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, we assume that x_1, x_2, \ldots, x_n are nonrandom and that y_1, y_2, \ldots, y_n are realizations of random variables Y_1, Y_2, \ldots, Y_n satisfying

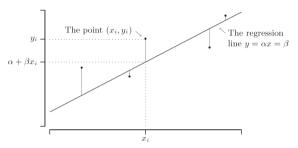
$$Y_i = \alpha + \beta x_i + U_i \quad \text{for } i = 1, 2, \dots, n,$$

where U_1, \ldots, U_n are independent random variables with $\mathrm{E}[U_i] = 0$ and $\mathrm{Var}(U_i) = \sigma^2$.

- Regression line: $y = \alpha + \beta x$ with intercept α and slope β
- \bullet x is the explanatory (or independent) variable, and y the response (or dependent) variable
- Independence of U_1, \ldots, U_n implies independence of Y_1, \ldots, Y_n [propagation of ind.]
 - ▶ But Y_i 's are not identically distributes, as $E[Y_i] = \alpha + \beta x_i$
- Also, notice the assumption $Var(Y_i) = Var(U_i) = \sigma^2$ [homoscedasticity]

Estimation of parameters

• How to estimate α and β ? MLE requires to know the distribution of the U_i 's



- $y_i \alpha \beta x_i$ is called a *residual* (or the *error*), and it is a realization of $U_i = Y_i \alpha \beta x_i$ • recall that $E[U_i] = 0$ and $Var(U_i) = E[U_i^2] = \sigma^2$
- The method of Least Squares prescribes to minimize the sum of squares of residuals:

$$\hat{\alpha}, \hat{\beta} = \arg\min_{\alpha, \beta} S(\alpha, \beta)$$
 where $S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$

• $S(\alpha, \beta)$ also called Sum of Squares of Errors (SSE) or Residual Sum of Squares (RSS)

Least Squares Estimates

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

Partial derivatives:

$$\frac{d}{d\alpha}S(\alpha,\beta) = -\sum_{i=1}^{n}2(y_i - \alpha - \beta x_i) \qquad \frac{d}{d\beta}S(\alpha,\beta) = -\sum_{i=1}^{n}2(y_i - \alpha - \beta x_i)x_i$$

• Equal to 0 for:

$$n\alpha + \beta \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$
 $\alpha \sum_{i=1}^{n} x_i + \beta \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i$

and solving, we get:

$$\hat{\alpha} = \bar{y}_n - \hat{\beta}\bar{x}_n \qquad \hat{\beta} = \frac{n\sum_{i=1}^n x_i y_i - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n\sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$

• $\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i$ are called the *fitted values*

Ordinary Least Squares (OLS) Estimates

$$\hat{\alpha} = \bar{y}_n - \hat{\beta}\bar{x}_n \qquad \hat{\beta} = \frac{n\sum_{i=1}^n x_i y_i - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n\sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$

• Equivalent form of $\hat{\beta}$

$$\hat{\beta} = \frac{\sum_{1}^{n} (x_i - \bar{x}_n)(y_i - \bar{y}_n)}{SXX} = r_{xy} \frac{s_y}{s_x}$$

where:

•
$$SXX = \sum_{1}^{n} (x_i - \bar{x}_n)^2$$

 $r_{xy} = \frac{\sum_{j=1}^{n} (x_i - \bar{x}_n) \cdot (y_i - \bar{y}_n)}{\sqrt{\sum_{j=1}^{n} (x_i - \bar{x}_n)^2 \cdot \sum_{j=1}^{n} (y_i - \bar{y}_n)^2}}$ is the Pearson's correlation coefficient

•
$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2}$$
 is the sample standard deviations of x_i 's

•
$$s_y = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (y_i - \bar{y}_n)^2}$$
 is the sample standard deviations of y_i 's

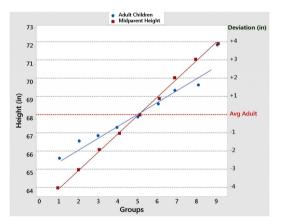
- The line $y = \hat{\alpha} + \hat{\beta}x$ always passes through the center of gravity (\bar{x}_n, \bar{y}_n)
 - ► Since $\hat{\alpha} = \bar{y}_n \hat{\beta}\bar{x}_n$, we have $\hat{\alpha} + \hat{\beta}\bar{x}_n = \bar{y}_n \hat{\beta}\bar{x}_n + \hat{\beta}\bar{x}_n = \bar{y}_n$

See R script

[prove it!]

Why 'regression'?

So, why is it called 'regression' anyway?



"See Francis Galton concluded that as heights of the parents deviated from the average height, [...] the heights of the children *regressed* to the average height of an adult."

Unbiasedness of estimators: $\hat{\beta}$

• Consider the least square estimators:

$$\hat{\alpha} = \bar{Y}_n - \hat{\beta}\bar{x}_n$$

$$\hat{\beta} = \frac{\sum_{1}^{n}(x_i - \bar{x}_n)(Y_i - Y_n)}{SXX}$$

where $SXX = \sum_{1}^{n} (x_i - \bar{x}_n)^2$. Since $\sum_{1}^{n} (x_i - \bar{x}_n) = 0$, we can rewrite $\hat{\beta}$ as:

$$\hat{\beta} = \frac{\sum_{1}^{n} (x_{i} - \bar{x}_{n}) Y_{i} - \sum_{1}^{n} (x_{i} - \bar{x}_{n}) \bar{Y}_{n}}{SXX} = \frac{\sum_{1}^{n} (x_{i} - \bar{x}_{n}) Y_{i}}{SXX}$$
(1)

• We have:

$$E[\hat{\beta}] = \frac{\sum_{1}^{n} (x_i - \bar{x}_n) E[Y_i]}{SXX} = \frac{\sum_{1}^{n} (x_i - \bar{x}_n) (\alpha + \beta x_i)}{SXX} = \frac{\beta \sum_{1}^{n} (x_i - \bar{x}_n) x_i}{SXX} = \beta$$

where the last step follows since $\sum_{1}^{n}(x_i-\bar{x}_n)x_i=\sum_{1}^{n}(x_i-\bar{x}_n)x_i-\sum_{1}^{n}(x_i-\bar{x}_n)\bar{x}_n=SXX$.

Moreover:

$$Var(\hat{\beta}) = \frac{\sum_{1}^{n} (x_{i} - \bar{x}_{n})^{2} Var(Y_{i})}{SXX^{2}} = \sigma^{2} \frac{\sum_{1}^{n} (x_{i} - \bar{x}_{n})^{2}}{SXX^{2}} = \frac{\sigma^{2}}{SXX}$$

Unbiasedness of estimators: $\hat{\alpha}$

• Consider the least square estimators:

$$\hat{\alpha} = \bar{Y}_n - \hat{\beta}\bar{x}_n \qquad \qquad \hat{\beta} = \frac{\sum_{1}^{n}(x_i - \bar{x}_n)(Y_i - \bar{Y}_n)}{SXX}$$

We have:

$$E[\hat{\alpha}] = E[\bar{Y}_n] - \bar{x}_n E[\hat{\beta}] = \frac{1}{n} \sum_{i=1}^n E[Y_i] - \bar{x}_n \beta$$
$$= \frac{1}{n} \sum_{i=1}^n (\alpha + \beta x_i) - \bar{x}_n \beta = \alpha + \bar{x}_n \beta - \bar{x}_n \beta = \alpha$$

Moreover:

$$Var(\hat{\alpha}) = Var(\bar{Y}_n - \hat{\beta}\bar{x}_n) = Var(\bar{Y}_n) + \bar{x}_n^2 Var(\hat{\beta}) - 2\bar{x}_n Cov(\bar{Y}_n, \hat{\beta}) = \sigma^2(\frac{1}{n} + \frac{\bar{x}_n^2}{SXX})$$

where $Cov(\bar{Y}_n, \hat{\beta}) = 0$

[prove it or see sdsln.pdf Chpt. 2]

An estimator for σ^2 , and standard errors

- $Var(\hat{\alpha})$ and $Var(\hat{\beta})$ use σ^2 , which is unknown
- We cannot use $\frac{1}{(n-1)}\sum_{i=1}^{n}(Y_i-\bar{Y}_n)^2$ as an estimator of σ^2 , because $E[Y_i]$ is not constant
- An unbiased estimate of σ^2 is:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

 $\hat{\sigma}$ is called the *residual standard error*. A close measure is the Root Mean Squared Error:

$$RMSE = \sqrt{\frac{1}{n} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2}$$

• The *standard errors* of the coefficient estimators are defined as the estimates of the standard deviations:

$$se(\hat{\alpha}) = \hat{\sigma}\sqrt{(\frac{1}{n} + \frac{\bar{X}_n^2}{SXX})}$$
 $se(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SXX}}$

See R script

LSE: Relation with MLE

$$Y_i = \alpha + \beta x_i + U_i$$

- In case $U_i \sim N(0, \sigma^2)$, we have $Y_i \sim N(\alpha + \beta x_i, \sigma^2)$
- Log-likelihood is

$$\ell(\alpha,\beta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y_i - \alpha - \beta x_i}{\sigma^2} \right)^2} \right) = -n \log \left(\sigma \sqrt{2\pi} \right) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

• It turns out that $arg \max_{\alpha,\beta} \ell(\alpha,\beta) = \hat{\alpha}, \hat{\beta}$

[same estimators as LSE]

Total variability = explained variability + unexplained variability

Total variability in the data. Sum of Squares Total (SST):

$$SST = \sum_{1}^{n} (y_i - \bar{y}_n)^2$$

Variability explained by regression. Sum of Squares of Regression (SSR):

$$SSR = \sum_{1}^{n} (\hat{\alpha} + \hat{\beta}x_{i} - \bar{y}_{n})^{2} = \sum_{1}^{n} (\hat{y}_{i} - \bar{\hat{y}}_{n})^{2}$$

because
$$\bar{\hat{y}}_n = \frac{1}{n} \sum_{1}^{n} (\hat{\alpha} + \hat{\beta} x_i) = \hat{\alpha} + \hat{\beta} \hat{x}_n = \bar{y}_n$$

• Unexplained variability. Sum of Squares of Errors (SSE):

$$SSE = \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

It turns out:

$$SST = SSR + SSE$$

[Prove it!]

• 1 - SSE/SST (or SSR/SST) is the fraction of explained variability over total variability

Residuals and R^2 (fraction of explained variability)

- 1 SSE/SST (or SSR/SST) is the fraction of explained variability over total variability
- When taking empirical variances:

$$\sigma_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y}_n)^2 = \frac{SST}{n-1} \qquad \sigma_{res}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{SSE}{n-1}$$

we define the coefficient of determination $R^2 = 1 - \sigma_{res}^2/\sigma_v^2$

- **Exercise:** show σ_{res}^2 is the empirical variance of residuals, i.e., $\frac{1}{n}\sum_{1}^{n}(y_i \hat{\alpha} \hat{\beta}x_i) = 0$
- Using the variance of the fitted:

$$\sigma_{\hat{y}}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\hat{y}_i - \bar{\hat{y}}_n)^2 = \frac{SSR}{n-1}$$

alternative definition is $R^2 = \sigma_{\hat{v}}^2/\sigma_{\nu}^2$

• For simple (one independent r.v.) linear regression:

[Prove it!]

$$R^{2} = r_{y\hat{y}}^{2} = \frac{\left[\sum_{i=1}^{n} (y_{i} - \bar{y}_{n}) \cdot (\hat{y}_{i} - \bar{\hat{y}}_{n})\right]^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{n})^{2} \cdot \sum_{i=1}^{n} (\hat{y}_{i} - \bar{\hat{y}}_{n})^{2}}$$

Adjusted R^2

- 1 SSE/SST (or SSR/SST) is the fraction of explained variability over total variability
- When taking adjusted variances:

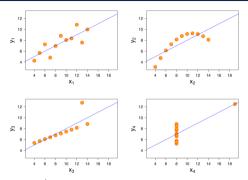
$$\sigma_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y}_n)^2 = \frac{SST}{n-1} \qquad \hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{SSE}{n-2}$$

(where $\hat{\sigma}$ is the residual standard error), we define the adjusted coefficient of determination:

$$adjR^2=1-rac{\hat{\sigma}^2}{\hat{\sigma}_{y}^2}=1-rac{\sigma_{res}^2}{\hat{\sigma}_{y}^2}rac{n-1}{n-2}$$

See R script

Anscombe's quartet



- Same regression line y = 3 + x/2
 - ► Top left: linear regression
 - ► Top right: non-linear regression
 - ▶ Bottom left: linear regression with outliers (requires robust regression approaches)
 - ▶ Bottom right: single **high-leverage** point produces correlation
- Look at data graphically before starting to analyze them with a specific technique!

Optional references

Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William Li (2005) Applied Linear Statistical Models.

5th edition McGraw-Hill