Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 12 - Simulation

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called *realizations*
- Basic issue: how to generate realizations?
 - ► The Galton Board

Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called *realizations*
- Basic issue: how to generate realizations?
 - ▶ in R: rnorm(5), rexp(2), rbinom(...), ...
- Ok, but how do they work?
- **Assumption**: we are only given *runif*()!
- **Problem**: derive all the other random generators

Simulation: discrete distributions

Bernoulli random variables

Suppose U has a U(0,1) distribution. To construct a Ber(p) random variable for some 0 , we define

$$X = \begin{cases} 1 & \text{if } U < p, \\ 0 & \text{if } U \ge p \end{cases}$$

so that

$$P(X = 1) = P(U < p) = p,$$

 $P(X = 0) = P(U \ge p) = 1 - p.$

This random variable X has a Bernoulli distribution with parameter p.

• For $X_1, \ldots, X_n \sim Ber(p)$ i.i.d., we have: $\sum_{i=1}^n X_i \sim Binom(n, p)$

See R script

$X \sim \mathit{Cat}(\mathbf{p})$

DEFINITION. A discrete random variable X has a Bernoulli distribution with parameter p, where $0 \le p \le 1$, if its probability mass function is given by

$$p_X(1) = P(X = 1) = p$$
 and $p_X(0) = P(X = 0) = 1 - p$.

We denote this distribution by Ber(p).

- Alternative definition: $p_X(a) = p^a \cdot (1-p)^{1-a}$ for $a \in \{0,1\}$
- Categorical distribution generalizes to $n_C \ge 2$ possible values

Categorical distribution

A discrete random variable X has a Categorical distribution with parameters p_0, \ldots, p_{n_C-1} where $\sum_i p_i = 1$ and $p_i \in [0, 1]$ if its p.m.f. is given by:

$$p_X(i) = P(X = i) = p_i$$
 for $i = 0, ..., n_C - 1$

• Alternative definition: $p_X(a) = \prod_i p_i^{\mathbb{I}_{a==i}}$ for $a = 0, \dots, n_C - 1$

$(X \sim Mult(n, \mathbf{p}))$

- $X \sim Bin(n, p)$ models the number of successes in n Bernoulli trials
- Intuition: for X_1, X_2, \ldots, X_n i.i.d. $X_i \sim Ber(p)$: $X = \sum_{i=1}^n X_i \sim Bin(n, p)$
- $X \sim Mult(n, \mathbf{p})$ models the number of categories in n Categorical trials
- Intuition: for X_1, X_2, \dots, X_n such that $X_i \sim Cat(\mathbf{p})$ and independent (i.i.d.), define:

$$Y_1 = \sum_{i=1}^n \mathbb{1}_{X_i = =0} \sim Bin(n, p_0) \quad \dots \quad Y_{n_C} = \sum_{i=1}^n \mathbb{1}_{X_i = =n_C-1} \sim Bin(n, p_{n_C-1})$$
 $X = (Y_1, \dots, Y_{n_C}) \sim Mult(n, \mathbf{p})$

Multinomial distribution

A discrete random variable $X = (Y_1, \dots, Y_{n_C})$ has a Multinomial distribution with parameters p_0, \dots, p_{n_C-1} where $\sum_i p_i = 1$ and $p_i \in [0,1]$ if its p.m.f. is given by:

$$p_X(i_0,\ldots,i_{n_C-1})=P(X=(i_0,\ldots,i_{n_C-1}))=\frac{n!}{i_0!i_1!\ldots i_{n_C-1}!}p_0^{i_0}p_1^{i_1}\ldots p_{(n_C-1)}^{i_{(n_C-1)}}$$

$X \sim Mult(n, \mathbf{p})$

- Example: student selection from a population with $n_C = 3$:
 - $p_0 = 60\%$ undergraduates
 - $p_1 = 30\%$ graduate
 - ▶ $p_2 = 10\%$ PhD students
- Assume n = 20 students are randomly selected
- $X \sim (Y_1, Y_2, Y_3)$ where:
 - Y₁ number of undergraduate students selected
 - ▶ Y₂ number of graduate students selected
 - ▶ Y₃ number of PhD students selected
- $P(X = (10,6,4)) = \frac{20!}{10!6!4!}(0.6)^{10}(0.3)^6(0.1)^4 = 9.6\%$

See R script

Simulation: continuous distributions

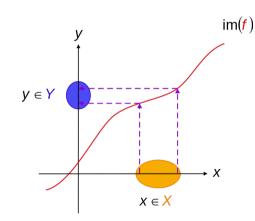
- $F(x) = P_X(X \le x)$
- $F: \mathbb{R} \to [0,1]$ invertible as $F^{-1}: [0,1] \to \mathbb{R}$
 - ► E.g., F strictly increasing
 - ▶ N.B., the textbook notation for F^{-1} is F^{inv}
- For $Y \sim U(0,1)$ and $0 \le b \le 1$ $P_Y(Y \le b) = b$
- then, for b = F(x) $P_Y(Y \le F(x)) = F(x)$

• and then by inverting
$$X = F^{-1}(Y)$$

- and then by inverting $X = F^{-1}(Y)$ $P_X(X \le X) = P_Y(F^{-1}(Y) \le X) = F(X)$
- In summary:

$$X = F^{-1}(Y) \sim F$$
 for $Y \sim U(0,1)$

- Example: $F(x) = 1 e^{-\lambda x}$ for $Exp(\lambda)$
 - $F^{-1}(y) = \frac{1}{\lambda} \log \frac{1}{1-y}$



 $f \cdot V \cdot V$

Optional reference

William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007)

Numerical Recipes - The Art of Scientific Computing

Chapter 7: Random Numbers

online book