Master Program in Data Science and Business Informatics Statistics for Data Science

Lesson 12 - Simulation

## Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

## Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called realizations


## Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called realizations
- Basic issue: how to generate realizations?
- The Galton Board



## Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called realizations
- Basic issue: how to generate realizations?
- in R: rnorm(5), $\operatorname{rexp}(2), \operatorname{rbinom}(\ldots), \ldots$


## Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called realizations
- Basic issue: how to generate realizations?
- in R: rnorm(5), $\operatorname{rexp}(2)$, rbinom (...), $\ldots$
- Ok, but how do they work?
- Assumption: we are only given runif()!


## Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called realizations
- Basic issue: how to generate realizations?
- in R: rnorm(5), $\operatorname{rexp}(2)$, rbinom (...), $\ldots$
- Ok, but how do they work?
- Assumption: we are only given runif()!
- Problem: derive all the other random generators


## Simulation: discrete distributions

Bernoulli random variables
Suppose $U$ has a $U(0,1)$ distribution. To construct a $\operatorname{Ber}(p)$ random variable for some $0<p<1$, we define

$$
X= \begin{cases}1 & \text { if } U<p \\ 0 & \text { if } U \geq p\end{cases}
$$

so that

$$
\begin{aligned}
& \mathrm{P}(X=1)=\mathrm{P}(U<p)=p \\
& \mathrm{P}(X=0)=\mathrm{P}(U \geq p)=1-p
\end{aligned}
$$

This random variable $X$ has a Bernoulli distribution with parameter $p$.

- For $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ i.i.d., we have: $\sum_{i=1}^{n} X_{i} \sim \operatorname{Binom}(n, p)$


## See R script

## $X \sim \operatorname{Cat}(\mathbf{p})$

> Definition. A discrete random variable $X$ has a Bernoulli distribution with parameter $p$, where $0 \leq p \leq 1$, if its probability mass function is given by

$$
p_{X}(1)=\mathrm{P}(X=1)=p \quad \text { and } \quad p_{X}(0)=\mathrm{P}(X=0)=1-p .
$$

We denote this distribution by $\operatorname{Ber}(p)$.

- Alternative definition: $p_{X}(a)=p^{a} \cdot(1-p)^{1-a}$ for $a \in\{0,1\}$
- Categorical distribution generalizes to $n \geq 2$ possible values


## Categorical distribution

A discrete random variable $X$ has a Categorical distribution with parameters $p_{0}, \ldots, p_{n_{c}-1}$ where $\sum_{i} p_{i}=1$ and $p_{i} \in[0,1]$ if its p.m.f. is given by:

$$
p_{X}(i)=P(X=i)=p_{i} \quad \text { for } i=0, \ldots, n_{C}-1
$$

- Alternative definition: $p_{X}(a)=\prod_{i} p_{i}^{\mathbb{1}_{a==i}}$ for $a=0, \ldots, n_{C}-1$


## $X \sim \operatorname{Mult}(n, \mathbf{p})$

- $X \sim \operatorname{Bin}(n, p)$ models the number of successes in $n$ Bernoulli trials
- Intuition: for $X_{1}, X_{2}, \ldots, X_{n}$ i.i.d. $X_{i} \sim \operatorname{Ber}(p): X=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, p)$
- $X \sim \operatorname{Mult}(n, \mathbf{p})$ models the number of categories in $n$ Categorical trials
- Intuition: for $X_{1}, X_{2}, \ldots, X_{n}$ such that $X_{i} \sim \operatorname{Cat}(\mathbf{p})$ and independent (i.i.d.), define:

$$
\begin{gathered}
Y_{1}=\sum_{i=1}^{n} \mathbb{1}_{X_{i}==0} \sim \operatorname{Bin}\left(n, p_{0}\right), \ldots, Y_{n c-1}=\sum_{i=1}^{n} \mathbb{1}_{X_{i}==n c-1} \sim \operatorname{Bin}\left(n, p_{n_{c}-1}\right) \\
X=\left(Y_{1}, \ldots, Y_{n_{c}-1}\right) \sim \operatorname{Mult}(n, \mathbf{p})
\end{gathered}
$$

## Multinomial distribution

A discrete random variable $X=\left(Y_{1}, \ldots, Y_{n_{c}-1}\right.$ has a Multinomial distribution with parameters $p_{0}, \ldots, p_{n_{c}-1}$ where $\sum_{i} p_{i}=1$ and $p_{i} \in[0,1]$ if its p.m.f. is given by:

$$
p_{X}\left(i_{0}, \ldots, i_{n_{c}-1}\right)=P\left(X=\left(i_{0}, \ldots, i_{n_{c}-1}\right)\right)=\frac{n!}{i_{0}!i_{1}!\ldots i_{n c-1}!} p_{0}^{i_{0}} p_{1}^{i_{1}} \ldots p_{n c-1}^{i_{n c-}}
$$

## $X \sim \operatorname{Mult}(n, \mathbf{p})$

- Example: student selection from a population with:
- $60 \%$ undergraduates
- 30\% graduate
- $10 \% \mathrm{PhD}$ students
- Assume $n=20$ students are randomly selected
- $X \sim\left(Y_{1}, Y_{2}, Y_{3}\right)$ where:
- $Y_{1}$ number of undergraduate students
- $Y_{2}$ number of graduate students
- $Y_{3}$ number of PhD students
- $P(X=(10,6,4))=\frac{20!}{10!6!4!}(0.6)^{10}(0.3)^{6}(0.1)^{4}=9.6 \%$

See R script

## Simulation: continuous distributions

- $F: \mathbb{R} \rightarrow[0,1]$ and $F^{-1}:[0,1] \rightarrow \mathbb{R}$
- E.g., $F$ strictly increasing
- N.B., the textbook notation for $F^{-1}$ is $F^{i n v}$
- For $X \sim U(0,1)$ and $0 \leq b \leq 1$

$$
P(X \leq b)=b
$$



See R script

$$
\begin{aligned}
& f: X \rightarrow Y \\
& y=f(x)
\end{aligned}
$$

## Simulation: continuous distributions

- $F: \mathbb{R} \rightarrow[0,1]$ and $F^{-1}:[0,1] \rightarrow \mathbb{R}$
- E.g., $F$ strictly increasing
- N.B., the textbook notation for $F^{-1}$ is $F^{i n v}$
- For $X \sim U(0,1)$ and $0 \leq b \leq 1$

$$
P(X \leq b)=b
$$

- then, for $b=F(x)$

$$
P(X \leq F(x))=F(x)
$$



See R script

$$
\begin{aligned}
& f: X \rightarrow Y \\
& y=f(x)
\end{aligned}
$$

## Simulation: continuous distributions

- $F: \mathbb{R} \rightarrow[0,1]$ and $F^{-1}:[0,1] \rightarrow \mathbb{R}$
- E.g., $F$ strictly increasing
- N.B., the textbook notation for $F^{-1}$ is $F^{i n v}$
- For $X \sim U(0,1)$ and $0 \leq b \leq 1$

$$
P(X \leq b)=b
$$

- then, for $b=F(x)$

$$
P(X \leq F(x))=F(x)
$$

- and then by inverting

$$
P\left(F^{-1}(X) \leq x\right)=F(x)
$$



See R script

$$
\begin{aligned}
& f: X \rightarrow Y \\
& y=f(x)
\end{aligned}
$$

## Simulation: continuous distributions

- $F: \mathbb{R} \rightarrow[0,1]$ and $F^{-1}:[0,1] \rightarrow \mathbb{R}$
- E.g., $F$ strictly increasing
- N.B., the textbook notation for $F^{-1}$ is $F^{i n v}$
- For $X \sim U(0,1)$ and $0 \leq b \leq 1$

$$
P(X \leq b)=b
$$

- then, for $b=F(x)$

$$
P(X \leq F(x))=F(x)
$$

- and then by inverting

$$
P\left(F^{-1}(X) \leq x\right)=F(x)
$$

- In summary:

$$
F^{-1}(X) \sim F \text { for } X \sim U(0,1)
$$



See R script

$$
\begin{aligned}
& f: X \rightarrow Y \\
& y=f(x)
\end{aligned}
$$

## Common distributions



Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

## Optional reference

William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007) Numerical Recipes - The Art of Scientific Computing Chapter 7: Random Numbers online book

