Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 12 - Simulation

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called *realizations*

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called *realizations*
- Basic issue: how to generate realizations?
 - ► The Galton Board

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called *realizations*
- Basic issue: how to generate realizations?
 - in R: rnorm(5), rexp(2), rbinom(...), ...

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called realizations
- Basic issue: how to generate realizations?
 - ▶ in R: rnorm(5), rexp(2), rbinom(...), ...
- Ok, but how do they work?
- **Assumption**: we are only given *runif*()!

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called *realizations*
- Basic issue: how to generate realizations?
 - ▶ in R: rnorm(5), rexp(2), rbinom(...), ...
- Ok, but how do they work?
- Assumption: we are only given runif()!
- **Problem**: derive all the other random generators

Simulation: discrete distributions

Bernoulli random variables

Suppose U has a U(0,1) distribution. To construct a Ber(p) random variable for some 0 , we define

$$X = \begin{cases} 1 & \text{if } U < p, \\ 0 & \text{if } U \ge p \end{cases}$$

so that

$$P(X = 1) = P(U < p) = p,$$

 $P(X = 0) = P(U \ge p) = 1 - p.$

This random variable X has a Bernoulli distribution with parameter p.

• For $X_1, \ldots, X_n \sim Ber(p)$ i.i.d., we have: $\sum_{i=1}^n X_i \sim Binom(n, p)$

$X \sim \mathit{Cat}(\mathbf{p})$

DEFINITION. A discrete random variable X has a Bernoulli distribution with parameter p, where $0 \le p \le 1$, if its probability mass function is given by

$$p_X(1) = P(X = 1) = p$$
 and $p_X(0) = P(X = 0) = 1 - p$.

We denote this distribution by Ber(p).

- Alternative definition: $p_X(a) = p^a \cdot (1-p)^{1-a}$ for $a \in \{0,1\}$
- Categorical distribution generalizes to $n \ge 2$ possible values

Categorical distribution

A discrete random variable X has a Categorical distribution with parameters p_0, \ldots, p_{n_C-1} where $\sum_i p_i = 1$ and $p_i \in [0, 1]$ if its p.m.f. is given by:

$$p_X(i) = P(X = i) = p_i$$
 for $i = 0, ..., n_C - 1$

• Alternative definition: $p_X(a) = \prod_i p_i^{\mathbb{I}_{a=-i}}$ for $a = 0, \dots, n_C - 1$

$X \sim Mult(n, \mathbf{p})$

- $X \sim Bin(n, p)$ models the number of successes in n Bernoulli trials
- Intuition: for X_1, X_2, \ldots, X_n i.i.d. $X_i \sim Ber(p)$: $X = \sum_{i=1}^n X_i \sim Bin(n, p)$
- $X \sim Mult(n, \mathbf{p})$ models the number of categories in n Categorical trials
- Intuition: for X_1, X_2, \dots, X_n such that $X_i \sim Cat(\mathbf{p})$ and independent (i.i.d.), define:

$$Y_1 = \sum_{i=1}^n \mathbb{1}_{X_i = =0} \sim Bin(n, p_0), \dots, Y_{n_C - 1} = \sum_{i=1}^n \mathbb{1}_{X_i = =n_C - 1} \sim Bin(n, p_{n_C - 1})$$
 $X = (Y_1, \dots, Y_{n_C - 1}) \sim Mult(n, \mathbf{p})$

Multinomial distribution

A discrete random variable $X = (Y_1, \dots, Y_{n_C-1})$ has a Multinomial distribution with parameters p_0, \dots, p_{n_C-1} where $\sum_i p_i = 1$ and $p_i \in [0, 1]$ if its p.m.f. is given by:

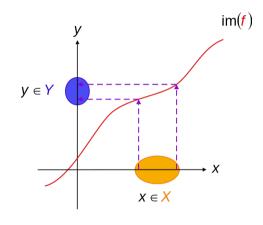
$$p_X(i_0,\ldots,i_{n_C-1})=P(X=(i_0,\ldots,i_{n_C-1}))=\frac{n!}{i_0!i_1!\ldots i_{n_C-1}!}p_0^{i_0}p_1^{i_1}\ldots p_{n_C-1}^{i_{n_C-1}}$$

$X \sim Mult(n, \mathbf{p})$

- Example: student selection from a population with:
 - ► 60% undergraduates
 - ▶ 30% graduate
 - ▶ 10% PhD students
- Assume n = 20 students are randomly selected
- $X \sim (Y_1, Y_2, Y_3)$ where:
 - \triangleright Y_1 number of undergraduate students
 - \triangleright Y_2 number of graduate students
 - ▶ *Y*₃ number of PhD students

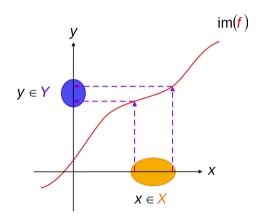
•
$$P(X = (10,6,4)) = \frac{20!}{10!6!4!}(0.6)^{10}(0.3)^6(0.1)^4 = 9.6\%$$

- ullet $F:\mathbb{R} \to [0,1]$ and $F^{-1}:[0,1] \to \mathbb{R}$
 - ► E.g., F strictly increasing
 - ▶ N.B., the textbook notation for F^{-1} is F^{inv}
- For $X \sim U(0,1)$ and $0 \le b \le 1$ $P(X \le b) = b$



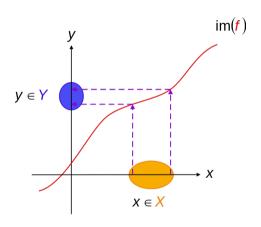
$$f: X \to Y \\ y = f(x)$$

- $F : \mathbb{R} \to [0,1] \text{ and } F^{-1} : [0,1] \to \mathbb{R}$
 - ► E.g., F strictly increasing
 - ▶ N.B., the textbook notation for F^{-1} is F^{inv}
- For $X \sim U(0,1)$ and $0 \le b \le 1$ $P(X \le b) = b$
- then, for b = F(x) $P(X \le F(x)) = F(x)$



$$f: X \to Y \\ y = f(x)$$

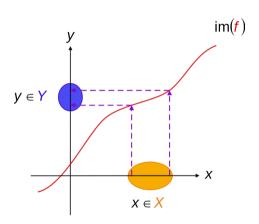
- $F : \mathbb{R} \to [0,1]$ and $F^{-1} : [0,1] \to \mathbb{R}$
 - ► E.g., F strictly increasing
 - ▶ N.B., the textbook notation for F^{-1} is F^{inv}
- For $X \sim U(0,1)$ and $0 \le b \le 1$ $P(X \le b) = b$
- then, for b = F(x) $P(X \le F(x)) = F(x)$
- and then by inverting $P(F^{-1}(X) \le x) = F(x)$



$$f: X \to Y \\ y = f(x)$$

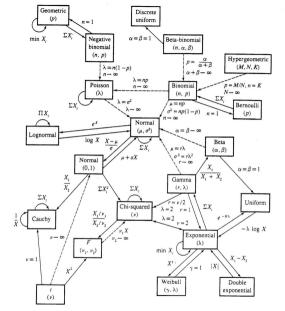
- $F: \mathbb{R} \to [0,1] \text{ and } F^{-1}: [0,1] \to \mathbb{R}$
 - ► E.g., F strictly increasing
 - ▶ N.B., the textbook notation for F^{-1} is F^{inv}
- For $X \sim U(0,1)$ and $0 \le b \le 1$ $P(X \le b) = b$
- then, for b = F(x) $P(X \le F(x)) = F(x)$
- and then by inverting $P(F^{-1}(X) \le x) = F(x)$
- In summary:

$$F^{-1}(X) \sim F$$
 for $X \sim U(0,1)$



$$f: X \to Y \\ y = f(x)$$

Common distributions



Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

Optional reference

William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007)

Numerical Recipes - The Art of Scientific Computing

Chapter 7: Random Numbers

online book