Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 11 - Moments. Functions of random variables

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

Moments

- Let X be a continuous random variable with density function $f(x)$
- $k^{\text {th }}$ moment of X, if it exists, is:

$$
E\left[X^{k}\right]=\int_{-\infty}^{\infty} x^{k} f(x) d x
$$

- $\mu=E[X]$ is the first moment of X
- $k^{\text {th }}$ central moment of X is:

$$
\mu_{k}=E\left[(X-\mu)^{k}\right]=\int_{-\infty}^{\infty}(x-\mu)^{k} f(x) d x
$$

- $\sigma=\sqrt{E\left[(X-\mu)^{2}\right]}$ standard deviation is the square root of the second central moment
- $k^{\text {th }}$ standardized moment of X is:

$$
\tilde{\mu}_{k}=\frac{\mu_{k}}{\sigma^{k}}=E\left[\left(\frac{X-\mu}{\sigma}\right)^{k}\right]
$$

Skewness

- $\tilde{\mu}_{1}=E[(X-\mu)] / \sigma=0$ since $E[X-\mu]=0$
- $\tilde{\mu}_{2}=E\left[(X-\mu)^{2}\right] / \sigma^{2}=1$ since $\sigma^{2}=E\left[(X-\mu)^{2}\right]$
- $\tilde{\mu}_{3}=E\left[(X-\mu)^{3}\right] / \sigma^{3}$ [(Pearson's moment) coefficient of skewness]
- Skewness indicates direction and magnitude of a distribution's deviation from symmetry

Positive
Skew

Symmetrical
Distribution

Negative Skew

- E.g., for $X \sim \operatorname{Exp}(\lambda), \tilde{\mu}_{3}=2$

Kurtosis

- $\tilde{\mu}_{4}=E\left[\left(\frac{X-\mu}{\sigma}\right)^{4}\right]$
[(Pearson's moment) coefficient of kurtosis]
- For $X \sim N(\mu, \sigma), \tilde{\mu}_{4}=3$ $\tilde{\mu}_{4}-3$ is called kurtosis in excess
- Kurtosis is a measure of the dispersion of X around the two values $\mu \pm \sigma$

- $\tilde{\mu}_{4}>3$ Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
- $\tilde{\mu}_{4}<3$ Platykurtic (broad) distribution has thinner tails

Functions of random variables: expectation

- $V=\pi H R^{2}$ be the volume of a vase of height H and radius R
- $g(H, R)=\pi H R^{2}$ is a random variable (function of random variables)
- $P_{V}(V=3)=P_{H R}\left(\pi H R^{2}=3\right)$
- How to calculate $E[V]$ for $H \Perp R$?

$$
E[V]=E\left[\pi H R^{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \pi h r^{2} f_{H}(h) f_{R}(r) d h d r
$$

TWO-DIMENSIONAL CHANGE-OF-VARIABLE FORMULA. Let X and Y be random variables, and let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function.
If X and Y are discrete random variables with values a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots, respectively, then

$$
\mathrm{E}[g(X, Y)]=\sum_{i} \sum_{j} g\left(a_{i}, b_{j}\right) \mathrm{P}\left(X=a_{i}, Y=b_{j}\right)
$$

If X and Y are continuous random variables with joint probability density function f, then

$$
\mathrm{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) \mathrm{d} x \mathrm{~d} y
$$

Linearity of expectations

Theorem. For X and Y random variables, and $s, t \in \mathbb{R}$:

$$
E[r X+s Y+t]=r E[X]+s E[Y]+t
$$

Proof. (discrete case)

$$
\begin{aligned}
& E[r X+Y s+t]=\sum_{a} \sum_{b}(r a+s b+t) P(X=a, Y=b) \\
= & \left(r \sum_{a} \sum_{b} a P(X=a, Y=b)\right)+\left(s \sum_{a} \sum_{b} b P(X=a, Y=b)\right)+\left(t \sum_{a} \sum_{b} P(X=a, Y=b)\right) \\
= & \left(r \sum_{a} a P(X=a)\right)+\left(s \sum_{b} b P(Y=b)\right)+t=r E[X]+s E[Y]+t
\end{aligned}
$$

Corollary. $E\left[a_{0}+\sum_{i=1}^{n} a_{i} X_{i}\right]=a_{o}+\sum_{i=1}^{n} a_{i} E\left[X_{i}\right]$
Corollary. $X \leq Y$ implies $E[X] \leq E[Y]$
Proof. $Z=Y-X \geq 0$ implies $E[Z]=E[Y]-E[X] \geq 0$, i.e., $E[Y] \geq E[X]$.

Applications

- Expectation of some discrete distributions
- $X \sim \operatorname{Ber}(p) \quad E[X]=p$
- $X \sim \operatorname{Bin}(n, p) \quad E[X]=n \cdot p$
\square Because $X=\sum_{i=1}^{n} X_{i}$ for $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$
- $X \sim \operatorname{Geo}(p) \quad E[X]=\frac{1}{p}$
- $X \sim \operatorname{NBin}(n, p) \quad E[X]=\frac{n \cdot(1-p)}{p}$
\square Because $X=\sum_{i=1}^{n} X_{i}-n$ for $X_{1}, \ldots, X_{n} \sim G e o(p)$
- Expectation of some continuous distributions
- $X \sim \operatorname{Exp}(\lambda) \quad E[X]=1 / \lambda$
- $X \sim \operatorname{Erl}(n, \lambda) \quad E[X]=\frac{n}{\lambda}$
\square Because $X=\sum_{i=1}^{n} X_{i}$ for $X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(\lambda)$

Expectation of product and quotients

Theorem. For $X \Perp Y$, we have: $E[X Y]=E[X] E[Y]$
Propagation of independence. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables. For each i, let $h_{i}: \mathbb{R} \rightarrow \mathbb{R}$ be a function and define the random variable

$$
Y_{i}=h_{i}\left(X_{i}\right) .
$$

Then $Y_{1}, Y_{2}, \ldots, Y_{n}$ are also independent.

Corollary. For $X \Perp Y$ and $Y \geq 0$, we have: $E[X / Y] \geq E[X] / E[Y]$ Proof. $X \Perp Y$ implies $X \Perp 1 / Y$. By theorem above:

$$
E[X / Y]=E[X \cdot 1 / Y]=E[X] E[1 / Y]
$$

and then by Jensen's inequality $E[X / Y] \geq E[X] / E[Y]$ since $1 / y$ is convex for $y \geq 0$.
Exercise at home. Show that $E[X / Y]=E[X] / E[Y]$ is a false claim.

Law of iterated expectations

Conditional expectation

$$
E[X \mid Y=b]=\sum_{i} a_{i} P_{X \mid Y}\left(a_{i} \mid b\right) \quad E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
$$

- Def. $E_{Y}[E[X \mid Y]]=\sum_{j} E\left[X \mid Y=b_{j}\right] p_{Y}\left(b_{j}\right)$ and $E_{Y}[E[X \mid Y]]=\int_{-\infty}^{\infty} E[X \mid Y=y] f_{Y}(y) d y$
- Theorem. (Law of iterated expectations)

$$
E_{Y}[E[X \mid Y]]=E[X]
$$

Proof. (X, Y discrete random variables)

$$
E_{Y}[E[X \mid Y]]=\sum_{j} \sum_{i} a_{i} p_{X \mid Y}\left(a_{i} \mid b_{j}\right) p_{Y}\left(b_{j}\right)=\sum_{j} \sum_{i} a_{i} p_{X Y}\left(a_{i}, b_{j}\right)=\sum_{i} a_{i} p_{X}\left(a_{i}\right)=E[X]
$$

Variance of the sum and Covariance

$$
\begin{aligned}
& \operatorname{Var}(X+Y)=E\left[(X+Y-E[X+Y])^{2}\right]=E\left[((X-E[X])+(Y-E[Y]))^{2}\right] \\
= & E\left[(X-E[X])^{2}\right]+E\left[(Y-E[Y])^{2}\right]+2 E[(X-E[X])(Y-E[Y])] \\
= & \operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

Covariance

The covariance $\operatorname{Cov}(X, Y)$ of two random variables X and Y is the number:

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]
$$

Uncorrelated

Positively correlated

Negatively correlated

Covariance

Theorem. $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$

Prove it!

- If X and Y are independent, $\operatorname{Cov}(X, Y)=0$ and $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
- But there are X and Y uncorrelated (ie., $\operatorname{Cov}(X, Y)=0$) that are dependent!
- Variances of some discrete distributions
- $X \sim \operatorname{Ber}(p) \quad \operatorname{Var}(X)=p(1-p)$
- $X \sim \operatorname{Bin}(n, p) \quad \operatorname{Var}(X)=n p(1-p)$
\square Because $X=\sum_{i=1}^{n} X_{i}$ for $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ and independent
- $X \sim \operatorname{Geo}(p) \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}$
- $X \sim \operatorname{NBin}(n, p) \quad \operatorname{Var}(X)=n \frac{1-p}{p^{2}}$
\square Because $X=\sum_{i=1}^{n} X_{i}-n$ for $X_{1}, \ldots, X_{n} \sim \operatorname{Geo}(p)$ and independent
- Variances of some continuous distributions
- $X \sim \operatorname{Exp}(\lambda) \quad \operatorname{Var}(X)=1 / \lambda^{2}$
- $X \sim \operatorname{Erl}(n, \lambda) \quad \operatorname{Var}(X)=\frac{n}{\lambda^{2}}$
\square Because $X=\sum_{i=1}^{n} X_{i}$ for $X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(\lambda)$ and independent

Covariance

$$
\begin{aligned}
& \text { COVARIANCE UNDER CHANGE OF UNITS. Let } X \text { and } Y \text { be two } \\
& \text { random variables. Then } \\
& \qquad \operatorname{Cov}(r X+s, t Y+u)=r t \operatorname{Cov}(X, Y) \\
& \text { for all numbers } r, s, t \text {, and } u \text {. }
\end{aligned}
$$

- Hence, $\operatorname{Var}(r X+s Y+t)=r^{2} \operatorname{Var}(X)+s^{2} \operatorname{Var}(Y)+2 r s \operatorname{Cov}(X, Y)$
- Covariance depends on the units of measure!

Correlation coefficient

Definition. Let X and Y be two random variables. The correlation

 coefficient $\rho(X, Y)$ is defined to be 0 if $\operatorname{Var}(X)=0$ or $\operatorname{Var}(Y)=0$, and otherwise$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} .
$$

- Correlation coefficient is dimensionless (not affected by change of units)
- E.g., if X and Y are in Km , then $\operatorname{Cov}(X, Y), \operatorname{Var}(X)$ and $\operatorname{Var}(Y)$ are in Km^{2}

$$
-1 \leq \rho(X, Y) \leq 1
$$

- The bounds are derived from the Schwarz's inequality:

$$
E[|X Y|] \leq \sqrt{E\left[X^{2}\right]} \sqrt{E\left[Y^{2}\right]}
$$

Proof. For any $u, w \in \mathbb{R}$, we have $2|u w| \leq u^{2}+w^{2}$. Therefore, $2|U W| \leq U^{2}+W^{2}$ for r.v.'s U and V. By defining $U=X / \sqrt{E\left[X^{2}\right]}$ and $W=Y / \sqrt{E\left[Y^{2}\right]}(*)$, we have $2 X Y / \sqrt{E\left[X^{2}\right]} \sqrt{E\left[Y^{2}\right]} \leq X^{2} / E\left[X^{2}\right]+Y^{2} / E\left[Y^{2}\right]$. Taking the expectations, we conclude: $2 E[X Y] / \sqrt{E\left[X^{2}\right]} \sqrt{E\left[Y^{2}\right]} \leq 2 . \quad\left({ }^{*}\right)$ The case $E\left[X^{2}\right]=0$ or $E\left[Y^{2}\right]=0$ is left as an exercise.

Kullback-Leibler divergence

KL divergence

For X, Y discrete random variables with p.m.f. p_{X} and p_{Y} :

$$
D(X \| Y)=\sum_{a} p_{X}(a) \log \frac{p_{X}(a)}{p_{Y}(a)}=H(X, Y)-H(X)
$$

where $H(X)=-\sum_{a} p_{X}(a) \log p_{X}(a)$ and $H(X ; Y)=-\sum_{a} p_{X}(a) \log p_{Y}(a)$

- Measure how distribution of Y (model) can reconstruct the distribution of X (data)
- Also called: relative entropy or information gain of X w.r.t. Y
- $H(X)$ is the entropy of X, and $H(X, Y)$ is the cross entropy of X w.r..t Y
- $H(X ; Y)$ is the "information" or "uncertainty" or "loss" when using Y to encode X
- Properties
- $D(X \| Y)=0$ iff $P(X \neq Y)=0, \quad D(X \| Y) \neq D(Y \| X)$, and
- $D(X \| Y) \geq 0$
[Gibbs' inequality]
- For X, Y continuous: $D(X \| Y)=\int_{-\infty}^{\infty} f_{X}(x) \log \frac{f_{X}(x)}{f_{Y}(x)} d x$

Mutual information

Mutual information

For X, Y discrete random variables with p.m.f. p_{X} and p_{Y} and joint p.m.f. $p_{X Y}$:

$$
I(X, Y)=D\left(p_{X Y} \| p_{X} p_{Y}\right)=\sum_{a, b} p_{X Y}(a, b) \log \frac{p_{X Y}(a, b)}{p_{X}(a) p_{Y}(b)}=H(X)+H(Y)-H((X, Y))
$$

$$
\text { where } H(X)=-\sum_{a} p_{X}(a) \log p_{X}(a) \text { and } H((X, Y))=-\sum_{a, b} p_{X Y}(a, b) \log p_{X Y}(a, b)
$$

- MI measures how dependent two distributions are
- Measure how product of marginals can reconstruct the distribution joint distribution
- Properties
- $I(X, Y)=I(Y, X)$, and $I(X, Y) \geq 0$
- $I(X, Y)=0$ iff $X \Perp Y$
- $N M I=\frac{I(X, Y)}{\min \{H(X), H(Y)\}} \in[0,1]$
[Normalized mutual information]
- For X, Y continuous: $I(X, Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) \log \frac{f_{X Y}(x, y)}{f_{X}(x) f_{Y}(y)} d x d y$

Sum of independent random variables

- For $X \sim F_{X}$ and $Y \sim F_{Y}$, let $Z=X+Y$. We know

$$
E[Z]=E[X]+E[Y] \quad \operatorname{Var}(Z)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

- What is the distribution function of Z when $X \Perp Y$?
- Examples:
- For $X \sim \operatorname{Bin}(n, p)$ and $Y \sim \operatorname{Bin}(m, p), Z \sim \operatorname{Bin}(n+m, p)$
- For $X \sim \operatorname{Geo}(p)$ (days radio 1 breaks) and $Y \sim \operatorname{Geo}(p)$ (days radio 2 breaks):

$$
p_{Z}(X+Y=k)=\sum_{l=1}^{k-1} p_{X}(I) \cdot p_{Y}(k-l)=(k-1) p^{2}(1-p)^{k-2}
$$

- See Lesson 04 and Lesson 08 for convolution formulas

> ADDING TWO INDEPENDENT DISCRETE RANDOM VARIABLES. Let X and Y be two independent discrete random variables, with probability mass functions p_{X} and p_{Y}. Then the probability mass function p_{Z} of $Z=X+Y$ satisfies

$$
p_{Z}(c)=\sum_{j} p_{X}\left(c-b_{j}\right) p_{Y}\left(b_{j}\right),
$$

Sum of two Normal random variables

Theorem. If $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ and $X \Perp Y$, then:

$$
Z=X+Y \sim N\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)
$$

Proof. See [T, Sect. 11.2]

- In general: $Z=a X+b Y+c \sim N\left(a \mu_{X}+b \mu_{Y}+c, a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}\right)$
- The converse of the theorem also holds:
[Lévy-Cramér theorem]
- If $X \Perp Y$ and $Z=X+Y$ is normally distributed, then X and Y follow a normal distribution.

Extremes of independent random variables

The distribution of the maximum. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent random variables with the same distribution function F, and let $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Then

$$
F_{Z}(a)=(F(a))^{n}
$$

- $P(Z \leq a)=P\left(X_{1} \leq a, \ldots, X_{n} \leq a\right)=\prod_{i=1}^{n} P\left(X_{i} \leq a\right)=\left((F(a))^{n}\right.$
- Example: maximum water level over 365 days

> The distribution of the minimum. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent random variables with the same distribution function F, and let $V=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Then

$$
F_{V}(a)=1-(1-F(a))^{n}
$$

- $P(V \leq a)=1-P\left(X_{1}>a, \ldots, X_{n}>a\right)=1-\prod_{i=1}^{n}\left(1-P\left(X_{i} \leq a\right)=1-\left((1-F(a))^{n}\right.\right.$

Product and quotient of independent random variables

Product of independent continuous random variables. Let X and Y be two independent continuous random variables with probability densities f_{X} and f_{Y}. Then the probability density function f_{Z} of $Z=X Y$ is given by

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{Y}\left(\frac{z}{x}\right) f_{X}(x) \frac{1}{|x|} \mathrm{d} x
$$

for $-\infty<z<\infty$.
Quotient of independent continuous random variables. Let X and Y be two independent continuous random variables with probability densities f_{X} and f_{Y}. Then the probability density function f_{Z} of $Z=X / Y$ is given by

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(z x) f_{Y}(x)|x| \mathrm{d} x
$$

for $-\infty<z<\infty$.

- $X, Y \sim N(0,1)$ independent, $Z=X / Y \sim \operatorname{Cau}(0,1)$ where:

$$
f_{Z}(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Optional reference

易 Kevin P. Murphy (2022)
Probabilistic Machine Learning: An Introduction
Chapter 6: Information Theory
online book

