Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 09 - Expectation and variance. Computations with random variables

Salvatore Ruggieri
Department of Computer Science
University of Pisa, Italy
salvatore.ruggieri@unipi.it

Expectation of a discrete random variable

- Buy lottery ticket every week, $p=1 / 10000$, what is probability of winning at $k^{t h}$ week?

$$
X \sim \operatorname{Geo}(p) \quad P(X=k)=(1-p)^{k-1} \cdot p \text { for } k=1,2, \ldots
$$

- What is the average number of weeks to wait (expected) before winning?

$$
E[X]=\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} \cdot p=\frac{1}{p}
$$

because $\sum_{k=1}^{\infty} k \cdot x^{k-1}=1 /(1-x)^{2}$
Definition. The expectation of a discrete random variable X taking the values a_{1}, a_{2}, \ldots and with probability mass function p is the number

$$
\mathrm{E}[X]=\sum_{i} a_{i} \mathrm{P}\left(X=a_{i}\right)=\sum_{i} a_{i} p\left(a_{i}\right) .
$$

- Expected value, mean value (weighted by probability of occurrence), center of gravity

Expected value may be infinite or may not exist!

- Fair coin: win 2^{k} euros if first H appears at $k^{\text {th }}$ toss
- X with p.m.f. $p\left(2^{k}\right)=2^{-k}$ for $k=1,2, \ldots$
- $p()$ is a p.m.f. since $\sum_{k=1}^{\infty} 2^{-k}=1 \quad$ using $\sum_{k=0}^{\infty} a^{k}=\frac{1}{1-a}$ for $|a|<1$
- $E[X]=\sum_{k=1}^{\infty} 2^{k} \cdot 2^{-k}=\sum_{k=1}^{\infty} 1=\infty$
- Expectation does not exist when $\sum_{i} a_{i} p\left(a_{i}\right)$ does not converge
- X with p.m.f. $p\left(2^{k}\right)=p\left(-2^{k}\right)=2^{-k}$ for $k=2,3, \ldots$
- $E[X]=\sum_{k=2}^{\infty}\left(2^{k} \cdot 2^{-k}-2^{k} \cdot 2^{-k}\right)=\sum_{k=2}^{\infty}(1-1)=0$ wrong!
- $E[X]=\sum_{k=2}^{\infty} 2^{k} \cdot 2^{-k}-\sum_{k=2}^{\infty} 2^{k} \cdot 2^{-k}=\infty-\infty$ undefined
- $E[X]$ is finite if $\sum_{i}\left|a_{i}\right| p\left(a_{i}\right)<\infty$
- In the case above, $\sum_{k=2}^{\infty}\left(\left|2^{k}\right| \cdot 2^{-k}+\left|-2^{k}\right| \cdot 2^{-k}\right)=\infty$

Expectation of some other discrete distributions

- Expectation of some other discrete distributions
- $X \sim U(m, M) \quad E[X]=(m+M) / 2$
$\square \sum_{i=m}^{M} \frac{i}{M-m+1}=\frac{1}{M-m+1} \sum_{i=0}^{M-m}(m+i)=m+(M-m) / 2=\frac{m+M}{2}$
- $X \sim \operatorname{Ber}(p) \quad E[X]=p$
$\square 0 \cdot(1-p)+1 \cdot p=p \quad$ [Mean may not belong to the support]
- $X \sim \operatorname{Bin}(n, p) \quad E[X]=n \cdot p$
\square Because... we'll see later
- $X \sim \operatorname{NBin}(n, p) \quad E[X]=\frac{n \cdot p}{1-p}$
\square Because ... we'll see later
- $X \sim \operatorname{Poi}(\mu) \quad E[X]=\mu$
\square Because, when $n \rightarrow \infty: \operatorname{Bin}(n, \mu / n) \rightarrow \operatorname{Poi}(\mu)$

Expectation of a continuous random variable

Definition. The expectation of a continuous random variable X with probability density function f is the number

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x .
$$

- Expectation of some continuous distributions
- $X \sim U(\alpha, \beta) \quad E[X]=(\alpha+\beta) / 2$
- $X \sim \operatorname{Exp}(\lambda) \quad E[X]=1 / \lambda$
\square Because $\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\left[-e^{-\lambda x}(x+1 / \lambda)\right]_{0}^{\infty}=e^{0}(0+1 / \lambda)$
- $X \sim N\left(\mu, \sigma^{2}\right) \quad E[X]=\mu$
\square Because: $\int_{-\infty}^{\infty} x \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x=\mu+\int_{-\infty}^{\infty}(x-\mu) \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x=_{z=\frac{x-\mu}{\sigma}}$

$$
=\mu+\sigma \int_{-\infty}^{\infty} z \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z=\mu
$$

- $X \sim \operatorname{Erl}(n, \lambda) \quad E[X]=n / \lambda$
\square Because ... we'll see later

Expected value may not exists!

- Cauchy distribution

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

- $X_{1}, X_{2} \sim N(0,1)$ i.i.d., $X=X_{1} / X_{2} \sim \operatorname{Cau}(0,1)$

$$
E[X]=\int_{-\infty}^{0} x f(x) d x+\int_{0}^{\infty} x f(x) d x
$$

- $\int_{-\infty}^{0} x f(x) d x=\left[\frac{1}{2 \pi} \log \left(1+x^{2}\right)\right]_{-\infty}^{0}=-\infty$
- $\int_{0}^{\infty} x f(x) d x=\left[\frac{1}{2 \pi} \log \left(1+x^{2}\right)\right]_{0}^{\infty}=\infty$

$$
E[X]=-\infty+\infty
$$

- $E[X]$ is finite if $\int_{-\infty}^{\infty}|x| f(x) d x<\infty$

Mean value does not always make sense in your data analytics project!

$E[g(X)] \neq g(E[X])$

- Recall that velocity = space/time, and then time = space/velocity
- Vector v of speed (Km / h) to reach school and their probabilities p using feet, bike, bus, train:

$$
v=c(5,10,20,30) \quad p=c(0.1,0.4,0.25,0.25)
$$

- Distance house-schools is 2 Km
- What is the average time to reach school?
- 2/sum(v*p) i.e., space/E[velocity]
- sum(2/v*p) i.e., E[space/velocity]
- $X=$ velocity, $g(X)=2 / X$ time to reach school
- $E[g(X)] \neq g(E[X])$

The change of variable formula (or rule of the lazy statistician)

- $X \sim U(0,10)$, width of a square field, $E[X]=5$
- $g(X)=X^{2}$ is the area of the field, $E[g(X)]=$?

$$
[E[g(X)] \neq g(E[X])]
$$

- $F_{g}(a)=P(g(X) \leq a)=P(X \leq \sqrt{a})=\sqrt{a} / 10$ for $0 \leq a \leq 100$
- Hence, $f_{g}(a)=d F_{g}(a) / d a=1 / 20 \sqrt{a}$
[later on, a general theorem]
- $E[g(X)]=\frac{1}{20} \int_{0}^{100} \frac{x}{\sqrt{x}} d x=\frac{1}{20} \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{100}=100 / 3$
- Alternatively, $E[g(X)]=\int_{0}^{10} x^{2} \frac{1}{10} d x=\frac{1}{10} \frac{1}{3}\left[x^{3}\right]_{0}^{10}=100 / 3$

The change-of-variable formula. Let X be a random variable, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function.
If X is discrete, taking the values a_{1}, a_{2}, \ldots, then

$$
\mathrm{E}[g(X)]=\sum_{i} g\left(a_{i}\right) \mathrm{P}\left(X=a_{i}\right) .
$$

If X is continuous, with probability density function f, then

$$
\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) \mathrm{d} x .
$$

Change of units

Theorem (Change of units)

$$
E[r X+s]=r E[X]+s
$$

- Example: for $Y=1.8 X+32$, we have $E[Y]=1.8 E[X]+32$
[Celsius to Fahrenheit]
- Corollary.

$$
E[X-E[X]]=E[X]-E[X]=0
$$

- Theorem. Expectation minimizes the square error, i.e., for $a \in \mathbb{R}$:

$$
E\left[(X-E[X])^{2}\right] \leq E\left[(X-a)^{2}\right]
$$

- Proof. (sketch) set $\frac{d}{d a} \int_{-\infty}^{\infty}(x-a)^{2} f(x) d x=0$

Entropy of a random variable

- The Shannon's information entropy is the average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes
- Information is inversely proportional to probability

$$
\frac{1}{p\left(a_{i}\right)}
$$

\square Highly likely events carry very little new information
\square Highly unlikely events carry more information

- Information content $i c()$ of two independent events should sum up

$$
\log \frac{1}{p\left(a_{i}\right)}
$$

$\square i c(p(A \cap B))=i c(p(A))+i c(p(B))=i c(p(A) p(B))$
$\square i c(p(\Omega))=i c(1)=0$
$\square i c(p(A)) \geq 0$

- $H(X)=E[-\log p(X)]$ (discrete)

$$
\begin{aligned}
H(X)= & E[-\log f(X)](\text { continuous }) \\
& H(X)=-\int_{-\infty}^{\infty} f(x) \log f(x) d x
\end{aligned}
$$

- For X discrete, $H(X) \geq 0$ since $-\log p(X)=\log 1 / p(X) \geq 0$
\square reached when $p\left(a_{1}\right)=1$ and $p\left(a_{i}\right)=0$ for $i \neq 1$
- For $X \sim \operatorname{Ber}(p), H(X)=-p \log p-(1-p) \log (1-p)$

Computation with discrete random variables

Theorem

For a discrete random variable X, the p.m.f. of $Y=g(X)$ is:

$$
P_{Y}(Y=y)=\sum_{g(x)=y} P_{X}(X=x)=\sum_{x \in g^{-1}(y)} P_{X}(X=x)
$$

- Proof. $\{Y=y\}=\{g(X)=y\}=\left\{x \in g^{-1}(y)\right\}$
- Corollary (the change-of-variable formula):

$$
E[g(X)]=\sum_{y} y P_{Y}(Y=y)=\sum_{y} y \sum_{g(x)=y} P_{X}(X=x)=\sum_{x} g(x) P_{X}(X=x)
$$

Example

- $X \sim U(1,200)$ number of tickets sold
- Capacity is 150
- $Y=\max \{X-150,0\}$ overbooked tickets

$$
P_{Y}(Y=y)=\left\{\begin{array}{lll}
150 / 200 & \text { if } y=0 & g^{-1}(0)=\{1, \ldots, 150\} \\
1 / 200 & \text { if } 1 \leq y \leq 50 & g^{-1}(y)=\{y+150\}
\end{array}\right.
$$

- Hence:

$$
E[Y]=0 \cdot \frac{150}{200}+\frac{1}{200} \cdot \sum_{y=1}^{50} y=6.375
$$

- or using the change-of-variable formula:

$$
E[Y]=\frac{1}{200} \cdot \sum_{x=1}^{200} \max \{X-150,0\}=\frac{1}{200} \cdot \sum_{x=151}^{200}(X-150)=6.375
$$

Computation with continuous random variables

Theorem

For a continuous random variable X, the density functions of $Y=g(X)$ when $g()$ is increasing/decreasing are:

$$
F_{Y}(y)=F_{X}\left(g^{-1}(y)\right) \quad f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d g^{-1}(y)}{d y}\right|
$$

- Proof. (for $g()$ increasing) Since $g()$ is invertible and $g(x) \leq y$ iff $x \leq g^{-1}(y)$:

$$
F_{Y}(y)=P_{Y}(g(X) \leq y)=P_{X}\left(X \leq g^{-1}(y)\right)=F_{X}\left(g^{-1}(y)\right)
$$

and then:

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{d F_{X}\left(g^{-1}(y)\right)}{d y}=\frac{d F_{X}\left(g^{-1}(y)\right)}{d g^{-1}} \frac{d g^{-1}(y)}{d y}=f_{X}\left(g^{-1}(y)\right) \frac{d g^{-1}(y)}{d y}
$$

Exercise: show the case $g()$ decreasing!

Change of units

Change-of-units transformation. Let X be a continuous random variable with distribution function F_{X} and probability density function f_{X}. If we change units to $Y=r X+s$ for real numbers $r>0$ and s, then

$$
F_{Y}(y)=F_{X}\left(\frac{y-s}{r}\right) \quad \text { and } \quad f_{Y}(y)=\frac{1}{r} f_{X}\left(\frac{y-s}{r}\right) .
$$

- For $X \sim N\left(\mu, \sigma^{2}\right)$, how is $Z=\frac{X}{\sigma}+\frac{-\mu}{\sigma}=\frac{X-\mu}{\sigma}$ distributed?
- $f_{Z}(z)=\sigma f_{X}(\sigma y+\mu)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}}$
- Hence, $Z \sim N(0,1)$
- In particular, for $X \sim N\left(\mu, \sigma^{2}\right)$, we have:

$$
P(X \leq a)=P\left(Z \leq \frac{a-\mu}{\sigma}\right)=\Phi\left(\frac{a-\mu}{\sigma}\right)
$$

Example: $\Lambda\left(\mu, \sigma^{2}\right)$

Log-normal distribution $Y=e^{X}$ for $X \sim N\left(\mu, \sigma^{2}\right)$, i.e., $\log (Y) \sim N\left(\mu, \sigma^{2}\right)$

- $Y=g(X)=e^{X}$

Support is $] 0, \infty[$

- $g(x)=e^{x}$ is increasing, and $g^{-1}(y)=\log y$, and $\frac{d g^{-1}(y)}{d y}=\frac{1}{y}$

$$
F_{Y}(y)=F_{X}\left(g^{-1}(y)\right)=\Phi\left(\frac{\log y-\mu}{\sigma}\right) \quad f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{d g^{-1}(y)}{d y}=\frac{1}{y \sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\log y-\mu}{\sigma}\right)^{2}}
$$

- $E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x=\int_{-\infty}^{\infty} y f_{Y}(y) d y=e^{\mu+\sigma^{2} / 2}$
- Plausible and empirically adequate model for:
- length of comments in posts, dwell time reading online articles, length of chess games, ...
- size of living tissue, number of hospitalized cases in epidemics, blood pressure, ...
- income of $97 \%-99 \%$ of the population, the number of citations, log of city size, ...
- times to repair a maintainable system, size of audio-video files, amount of internet traffic per unit time, ...

Common distributions

- Probability distributions at Wikipedia
- Probability distributions in \mathbf{R}
- 园
C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)

Statistical Distributions, 4th Edition Wiley

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

Example

- $X \sim U(0,1)$ radius $\quad f_{X}(x)=1 \quad F_{X}(x)=x$ for $x \in[0,1]$
- $Y=g(X)=\pi \cdot X^{2}$

Support is $[0, \pi]$

- $g(x)=\pi x^{2}$ is increasing, and $g^{-1}(y)=\sqrt{\frac{y}{\pi}}$, and $\frac{d g^{-1}(y)}{d y}=\frac{1}{2 \sqrt{\pi y}}$

$$
F_{Y}(y)=F_{X}\left(g^{-1}(y)\right)=\sqrt{\frac{y}{\pi}} \quad f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{d g^{-1}(y)}{d y}=\frac{1}{2 \sqrt{\pi y}}
$$

Do not lift distributions from a data column to a derived column in your data analytics project!

See R script

- Notice that: $g(E[X])=\pi / 4 \leq E[g(X)]=\int_{0}^{1} g(x) f_{X}(x) d x=\int_{0}^{\pi} y f_{Y}(y) d y=\frac{\pi}{3}$

Jensen's inequality

Jensen's inequality. Let g be a convex function, and let X be a random variable. Then

$$
g(\mathrm{E}[X]) \leq \mathrm{E}[g(X)]
$$

- $f()$ is convex if $f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)$ for $t \in[0,1]$

- if $f^{\prime \prime}(x) \geq 0$ then $f()$ is convex, e.g., $g(x)=\pi x^{2}$ or $g(x)=1 / x$ for $x \geq 0$

Corollary and Example

Corollary (see [T, Ex. 8.11]. For a concave function g, namely $g^{\prime \prime}(x) \leq 0$: $g(E[X]) \geq E[g(X)]$

- $\log (x)$ is concave since $\log ^{\prime \prime}(x)=-1 / x^{2} \leq 0$
- Let X be discrete with finite domain of n elements
- By corollary above:

$$
H(X)=E\left[\log \frac{1}{p(X)}\right] \leq \log E\left[\frac{1}{p(X)}\right]
$$

- By change of variable:

$$
E\left[\frac{1}{p(X)}\right]=\sum_{i} \frac{p\left(a_{i}\right)}{p\left(a_{i}\right)}=n
$$

and then maximum entropy is:

$$
H(X) \leq \log n
$$

- E.g., $X \sim \operatorname{Ber}(p)$, maximum entropy (uncertainty) for equiprobable events $p=1 / 2$

Variance

- Investment A. $P(X=450)=0.5 \quad P(X=550)=0.5 \quad E[X]=500$
- Investment B. $P(X=0)=0.5 \quad P(X=1000)=0.5 \quad E[X]=500$
- Spread around the mean is important!

Variance and standard deviations

The variance $\operatorname{Var}(X)$ of a random variable X is the number:

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]
$$

$\sigma_{X}=\sqrt{\operatorname{Var}(X)}$ is called the standard deviation of X.

- The standard deviation has the same dimension as $E[X]$ (and as X)
- For X discrete, $\operatorname{Var}(X)=\sum_{i}\left(a_{i}-E[X]\right)^{2} p\left(a_{i}\right)$
- Investment A. $\operatorname{Var}(X)=50^{2}$ and $\sigma_{X}=50$
- Investment B. $\operatorname{Var}(X)=500^{2}$ and $\sigma_{X}=500$

Examples

- For $a \in \mathbb{R}$:

$$
E[|X-a|] \leq \sqrt{E\left[(X-a)^{2}\right]}
$$

- Apply Jensen's ineq. for $g(y)=y^{2}$ convex on the r.v. $Y=|X-a|$
- Median minimizes absolute deviation, i.e., for $a \in \mathbb{R}$:

$$
E\left[\left|X-m_{X}\right|\right] \leq E[|X-a|]
$$

- Prove it! (for continuous functions) Hint: $\frac{d}{d x}|x|=x /|x|$
- Maximum distance between expectation and median:

$$
\left|E[X]-m_{X}\right| \leq E\left[\left|X-m_{X}\right|\right] \leq E[|X-E[X]|] \leq \sqrt{E\left[(X-E[X])^{2}\right]}=\sigma_{X}
$$

- Apply Jensen's ineq. for $g(y)=|y|$ convex on the r.v. $Y=X-m_{X}$ plus two results above

Mode

- For discrete r.v. X with p.m..f. $p()$: the values a such that $p(a)$ is maximum, i.e.:

$$
\underset{a}{\arg \max } p(a)
$$

- Can be more than one, e.g., in $\operatorname{Ber}(0.5)$
- For continuous r.v. X with d.f. $f()$: the values x such that $f(x)$ is a local maximum, e.g.:

$$
f^{\prime}(x)=0 \quad \text { and } \quad f^{\prime \prime}(x)<0
$$

- Notice: local maximum!
- Unimodal distribution = that have only one mode

Variance

Theorem. $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$
Proof.

$$
\begin{aligned}
\operatorname{Var}(X) & =E[(X-E[X])(X-E[X])] \\
& =E\left[X^{2}+E[X]^{2}-2 X E[X]\right] \\
& =E\left[X^{2}\right]+E[X]^{2}-E[2 X E[X]] \\
& =E\left[X^{2}\right]+E[X]^{2}-2 E[X] E[X]=E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

- $E\left[X^{2}\right]$ is called the second moment of X

$$
\int_{-\infty}^{\infty} x^{2} f(x) d x
$$

Corollary.

$$
\operatorname{Var}(r X+s)=r^{2} \operatorname{Var}(X)
$$

Prove it!

- Variance insensitive to shift s !

Variance may be infinite or may not exist!

Standard deviation σ_{X} is a measure of the margin of error around a predicted value (e.g., temperature " 20 ± 1.5 ").
An infinite or non-existent margin of error is no prediction at all.

- Variance may not exists!
- If expectation does not exist!
- Also in cases when expectation exists
\square We'll see later Power laws.
- Variance can be infinite
- Distributions have fat upper tails that decrease at an extremely slow rate.
- The slow decay of probability increases the odds of very extreme values (outliers)
- E.g., e^{X} for $X \sim \operatorname{Cau}(0,1)$

Variance

- Variance of some discrete distributions
- $X \sim U(m, M) \quad E[X]=\frac{(m+M)}{2} \quad \operatorname{Var}(X)=\frac{(M-m+1)^{2}-1}{12}$
\square use $\operatorname{Var}(X)=\operatorname{Var}(X-m)$, call $n=M-m+1$ and $\sum_{i=1}^{n-1} i^{2}=\frac{(n-1) n(2 n-1)}{6}$
- $X \sim \operatorname{Ber}(p) \quad E[X]=p \quad \operatorname{Var}(X)=p^{2}(1-p)+(1-p)^{2} p=p(1-p)$
- $X \sim \operatorname{Bin}(n, p) \quad E[X]=n \cdot p \quad \operatorname{Var}(X)=n p(1-p)$
\square Because ... we'll see later
- $X \sim \operatorname{Geo}(p) \quad E[X]=\frac{1}{p} \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}$
\square Hint: use $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$ and $\sum_{k=1}^{\infty} k^{2} \cdot x^{k-1}=\frac{1+x}{(1-x)^{3}}$
- $X \sim \operatorname{NBin}(n, p) \quad E[X]=\frac{n \cdot p}{1-p} \quad \operatorname{Var}(X)=n \frac{1-p}{p^{2}}$
\square Because ... we'll see later
- $X \sim \operatorname{Poi}(\mu) \quad E[X]=\mu \quad \operatorname{Var}(X)=\mu$
\square Because, when $n \rightarrow \infty: \operatorname{Bin}(n, \mu / n) \rightarrow \operatorname{Poi}(\mu)$

Variance

- Variance of some continuous distributions
- $X \sim U(\alpha, \beta) \quad E[X]=(\alpha+\beta) / 2 \quad \operatorname{Var}(X)=(\beta-\alpha)^{2} / 12$
\square Prove it! Recall that $f(x)=1 /(\beta-\alpha)$
- $X \sim \operatorname{Exp}(\lambda) \quad E[X]=1 / \lambda \quad \operatorname{Var}(X)=1 / \lambda^{2}$
\square Prove it! Recall that $f(x)=\lambda e^{-\lambda x}$
- $X \sim N\left(\mu, \sigma^{2}\right) \quad E[X]=\mu \quad \operatorname{Var}(X)=\sigma^{2}$
\square Prove it! Hint: use $z=\frac{x-\mu}{\sigma}$ and integration by parts.
- $X \sim \operatorname{Erl}(n, \lambda) \quad E[X]=n / \lambda \quad \operatorname{Var}(X)=n / \lambda^{2}$
\square Because ... we'll see later

$E[]$ and $\operatorname{Var}()$ of random variables with bounded support

Assume $a \leq X \leq b$, or more generally $P(a \leq X \leq b)=1$
[almost surely or a.s.] It turns out that expectation and variance are finite!

- $a \leq E[X] \leq b$
- E.g., for X continuous, $E[X]=\int_{a}^{b} x f(x) d x \leq \int_{a}^{b} b f(x) d x=b$
- $0 \leq \operatorname{Var}(X) \leq(b-a)^{2} / 4$

Proof.

- Since $0 \leq(X-E[X])^{2}$, we have $0 \leq E\left[(X-E[X])^{2}\right]=\operatorname{Var}(X)$
- For any $\gamma \in \mathbb{R}$, consider $E\left[(X-\gamma)^{2}\right]=\gamma^{2}-2 \gamma E[X]+E\left[X^{2}\right]$
$\square \mathrm{It}$ is mimimum for $\gamma=E[X]$
\square Thus, $E\left[(X-E[X])^{2}\right]=\operatorname{Var}(X) \leq E\left[(X-\gamma)^{2}\right]$
- For $\gamma=(a+b) / 2$, we have $(X-\gamma)^{2} \leq(b-\gamma)^{2}$, and then:

$$
\operatorname{Var}(X) \leq E\left[(X-\gamma)^{2}\right] \leq(b-\gamma)^{2}=\left(b-\frac{(a+b)}{2}\right)^{2}=\frac{(b-a)^{2}}{4}
$$

- Exercise at home: show that the bound $(b-a)^{2} / 4$ can be reached.

