12 Maggio 2025

INTRODUCTION TO

CAUSAL MODELLING AND REASONING

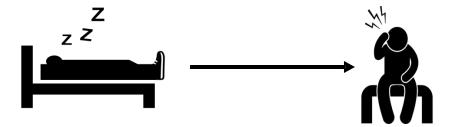
Martina Cinquini & Isacco Beretta

REICHENBACH COMMON CAUSE PRINCIPLE

Let X and Y be two variables such that X and Y are **statistically dependent** then it holds:

- X is indirectly causing Y
- Y is indirectly causing X
- There is a possibly unobserved common cause Z that indirectly causes both
 X and Y

Sleeping with shoes on is strongly correlated with waking up with a headache



Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

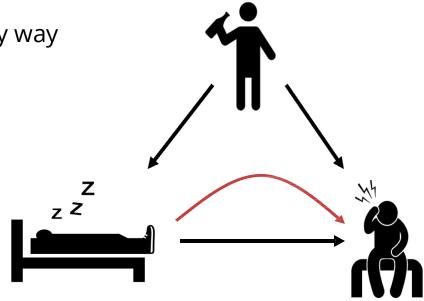
1. Shoe-sleepers differ from non-shoe-sleepers in a key way

Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

1. Shoe-sleepers differ from non-shoe-sleepers in a key way

2. Confounding



Sleeping with shoes on is strongly correlated with waking up with a headache

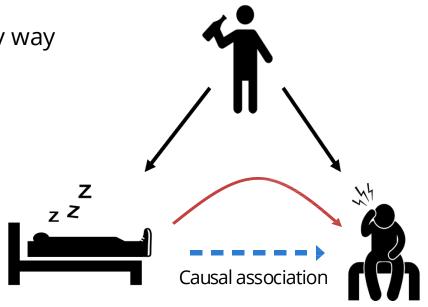
Common cause: drinking the night before

1. Shoe-sleepers differ from non-shoe-sleepers in a key way

2. Confounding

Total association (e.g., correlation):

Mixture of causal and confounding association



INGREDIENTS OF A STATISTICAL THEORY OF CAUSALITY

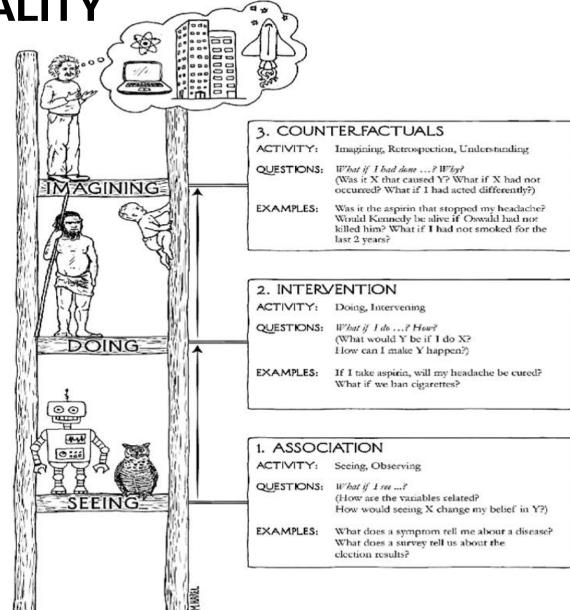
- Working definition of causation
- Method for creating causal models
- Method for linking causal models with features of data
- Method for reasoning over model and data

THE LATTER OF CAUSALITY

"Actual" Causality

"Causality-in-mean"

Statistics



RANDOMIZED EXPERIMENTS

Which kind of post works better?

Interventional data

Post 1

Post 2

Post ...

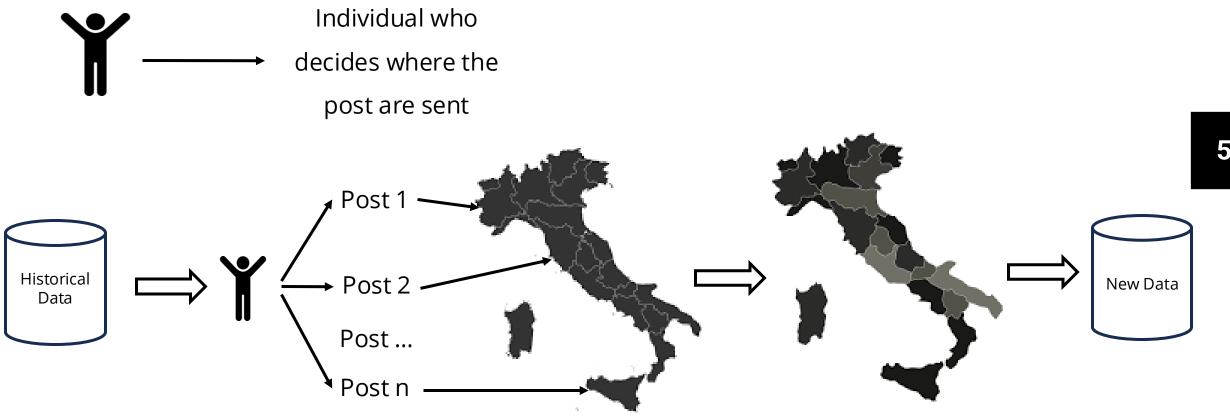
Limitations

- Can not use historical data
- It **cannot** be applied to **certain situations** (e.g., long-term effect, selected demographics, content virality)

Post n

BEYOND RANDOMIZED EXPERIMENTS

Associational data



CAUSAL MODEL FRAMEWORKS

Potential Outcomes (PO)

Structural Causal Model (SCM)

Antecedents in the earlier econometric literature

Demand and Supply Models (Haavelmo, 1944)

Path analysis (Wright, 1934)

These frameworks are complementary, with different strengths that make them appropriate to address different problems in specific situations.

CAUSAL MODEL FRAMEWORKS

Potential Outcomes (PO)

Structural Causal Model (SCM)

Antecedents in the earlier econometric literature

Demand and Supply Models (Haavelmo, 1944) Path analysis (Wright, 1934)

Specifically, to deal with:

Estimating individual-level causal effects

Complex models with a large number of variables

POTENTIAL OUTCOME: INTUITION

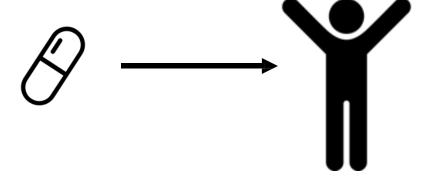
Inferring the effect of treatment on some outcome

POTENTIAL OUTCOME: INTUITION

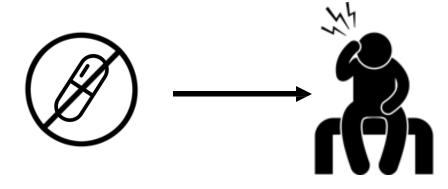
Inferring the effect of treatment on some outcome

Causal Effect?

Take a pill



Don't take a pill

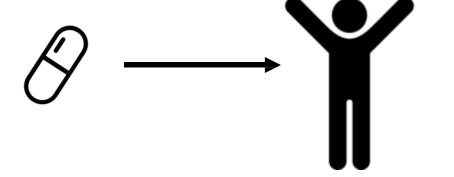


POTENTIAL OUTCOME: INTUITION

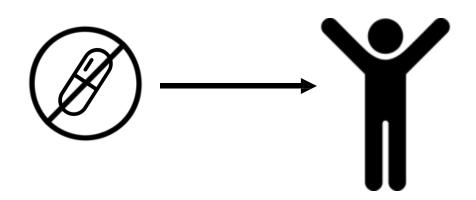
Inferring the effect of treatment on some outcome

No Causal Effect

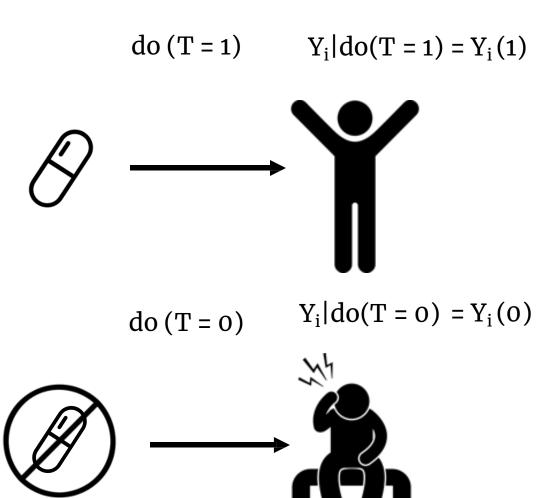
Take a pill



Don't take a pill



POTENTIAL OUTCOME: NOTATION



T: Observed Treatment

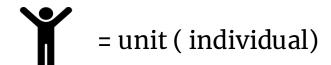
Y: Observed Outcome

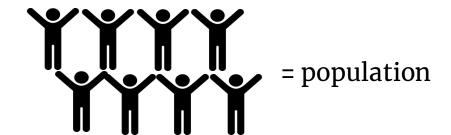
i: used in subscript to denote a specific individual

 $Y_i(1)$: PO under treatment

 $Y_i(0)$: PO under no treatment

OTHER DEFINITIONS

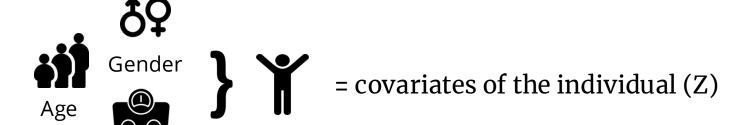




INDIVIDUAL TREATMENT EFFECT (ITE)

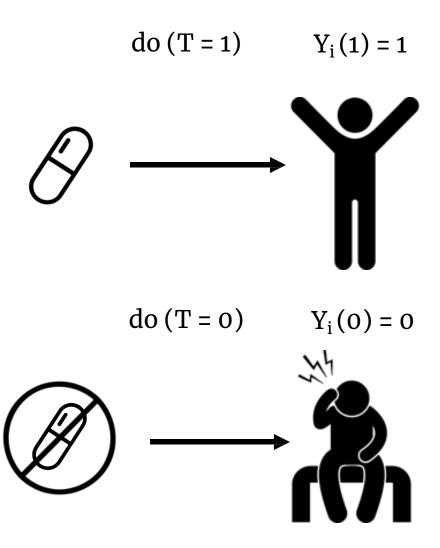
The ITE for the i^{th} unit is defined as follows:

$$Y_{i}(1) - Y_{i}(0)$$



Weight

POTENTIAL OUTCOME: NOTATION



T: Observed Treatment

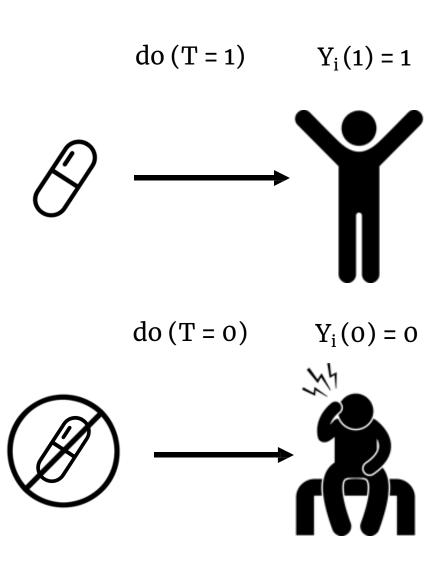
Y: Observed Outcome

i: used in subscript to denote a specific individual

 $Y_i(1)$: PO under treatment

 $Y_i(0)$: PO under no treatment

Causal Effect: $Y_i(1) - Y_i(0) = 1$



Fundamental Problem.

We cannot observe both $Y_i(1)$ and $Y_i(0)$, therefore we cannot observe the

Causal Effect: $Y_i(1) - Y_i(0)$

The PO that you do not (and cannot) observe are known as **COUNTERFACTUALS** because they are counter to fact (reality).

Due to the fundamental problem, we know that we can't access to ITE

AVERAGE TREATMENT EFFECT (ATE)

The ATE is obtained by taking an average over the ITEs:

$$E[Y_i(1) - Y_i(0)] = E[Y(1) - Y(0)]$$

where we recall that the average is over the individuals i if $Y_i(x)$ is deterministic.

How would we actually compute the ATE?

i	T	Y	Y(1)	Y(o)	Y(1)—Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

The fundamental problem of CI can be seen as a **MISSING DATA**

PROBLEM

The question mark means that we do not observe the value

 $E[Y_i(1) - Y_i(0)] = ?$

i	T	Y	Y(1)	Y(o)	Y(1)—Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

$$E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)]$$

i	T	Y	Y(1)	Y(0)	Y(1)—Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

$$E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] = E[Y | T = 1] - E[Y | T = 0]$$

i	T	Y	Y(1)	Y(o)	Y(1)—Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

$$E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] = E[Y | T = 1] - E[Y | T = 0]$$

i	T	Y	Y(1)	Y(o)	Y(1)—Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

$$E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] = E[Y | T = 1] - E[Y | T = 0]$$

i	T	Y	Y(1)	Y(o)	Y(1)—Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

The fundamental problem of CI can be seen as a **MISSING DATA PROBLEM**

2/3 1/3

$$E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] = E[Y | T = 1] - E[Y | T = 0]$$

i	T	Y	Y(1)	Y(o)	Y(1)—Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

The fundamental problem of CI can be seen as a **MISSING DATA PROBLEM**

2/3 - 1/3 = 1/3

$$E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] \ge E[Y \mid T = 1] - E[Y \mid T = 0]$$

i	T	Y	Y(1)	Y(0)	Y(1)—Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

2/3 - 1/3 = 1/3

What does it mean?

causation is not simply

association

In general, they are not equal due to **CONFOUNDING**

What **ASSUMPTIONS** would make the ATE equal to the associational difference?

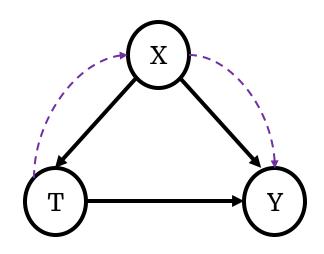
IGNORABILITY - $(Y(1), Y(0)) \perp T$

$$E[Y_i(1)] - E[Y_i(0)] = E[Y(1) | T = 1] - E[Y(0) | T = 0]$$

= $E[Y | T = 1] - E[Y | T = 0]$

- We can ignore how individual ended up in the treatment/control group, and treat their PO as exchangeable. However, it is **unrealistic** in observational data.
- () Unconfoundeness

$$(Y(1), Y(0)) \perp T \mid X$$



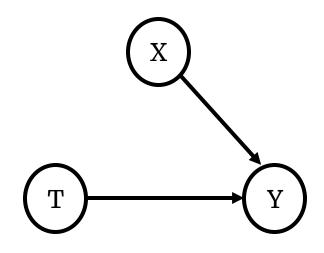
IGNORABILITY - $(Y(1), Y(0)) \perp T$

$$E[Y_i(1)] - E[Y_i(0)] = E[Y(1) | T = 1] - E[Y(0) | T = 0]$$

= $E[Y | T = 1] - E[Y | T = 0]$

- We can ignore how individual ended up in the treatment/control group, and treat their PO as exchangeable. However, it is **unrealistic** in observational data.
- Unconfoundeness

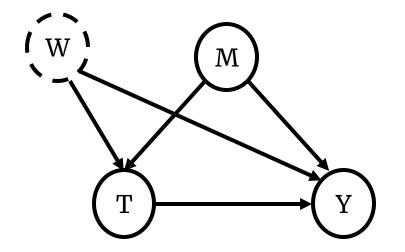
$$(Y(1), Y(0)) \perp T \mid X$$



When conditioning on **X**, **non-causal** association between *T* and **Y no longer exists**.

UNCONFOUNDENESS

- While is not a problem in randomized experiments, it is an **untestable assumption** in observational data
- There may be some **unobserved confounders** that are not part of $X = \{M\}$, meaning unconfoundedness is <u>violated</u>.

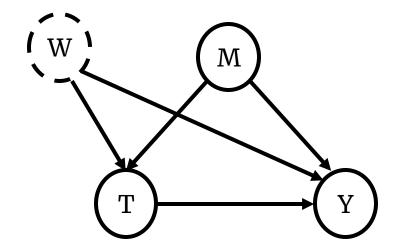


Ignorability

$$(Y(1),Y(0))\perp T\mid X$$

UNCONFOUNDENESS

- While is not a problem in randomized experiments, it is an untestable assumption in observational data
- There may be some **unobserved confounders** that are not part of $X = \{M\}$, meaning unconfoundedness is <u>violated</u>.



Ignorability
(Y(1), Y(0)) T | X

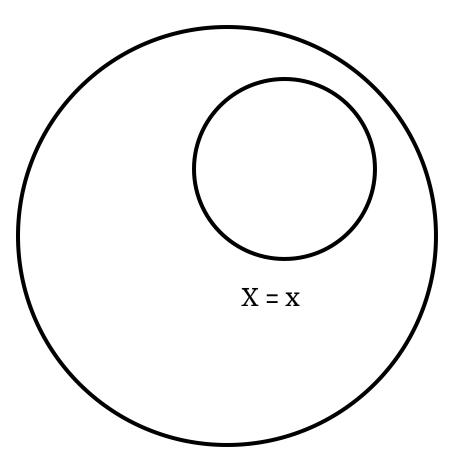
POSITIVITY

For all values x of covariates x present in the population of interest (i.e., z such that P(X = x > 0))

$$0 < P(T = 1 | X = x) < 1$$

Positivity is the condition that **all subgroups of the data** with different value x for covariates X have some probability of receiving any value of treatment T

POSITIVITY: INTUITION



No one treated

$$T = 0$$

$$T = 0$$

$$T = 0$$

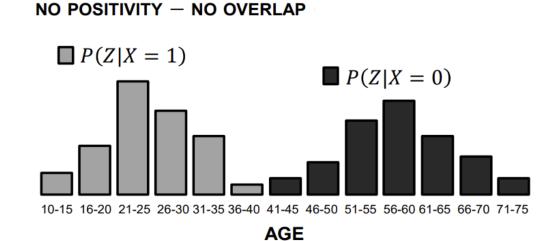
Everyone treated

$$T = 1$$

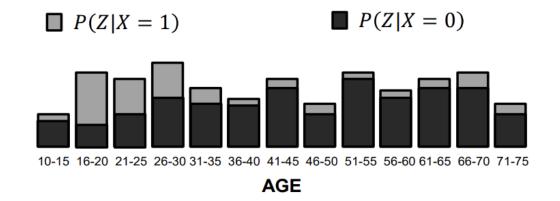
$$T = 1$$

$$T = 1$$

POSITIVITY: OVERLAP



POSITIVITY — OVERLAP



No overlap means severe positivity violation

Complete overlap means no positivity violation

adjusting (conditioning) on more covariates **Z**

could lead to

13

higher chance of satisfying unconfoundedness

could lead to

higher chance of violating positivity

demanding too much from models and getting very bad behavior in return

fit a model to $\mathbb{E}[Y|X, \mathbf{Z}]$ using the available data (x, y, \mathbf{z})

increase the "dimension" of the covariates **Z**

makes the subgroups for any level **z** of the covariates **Z** smaller

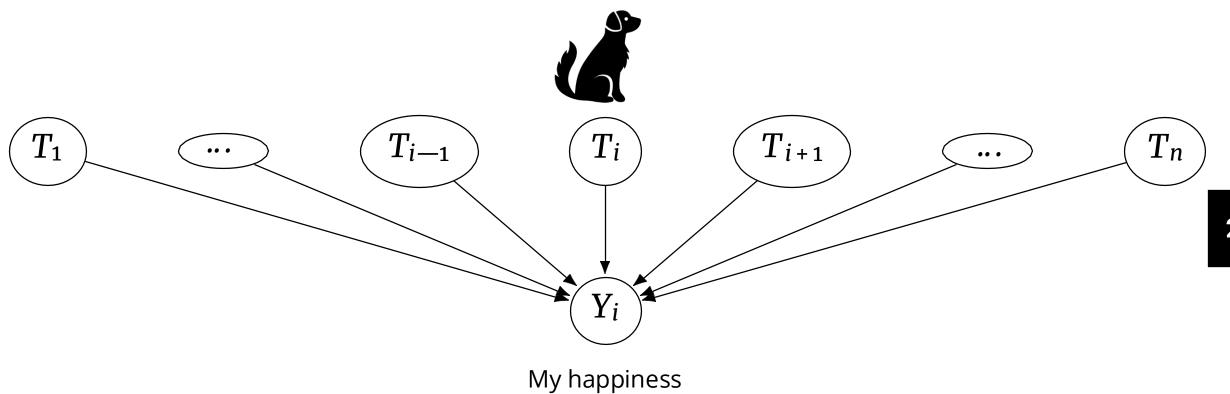
CURSE OF DIMENSIONALITY

NO INTERFERENCE

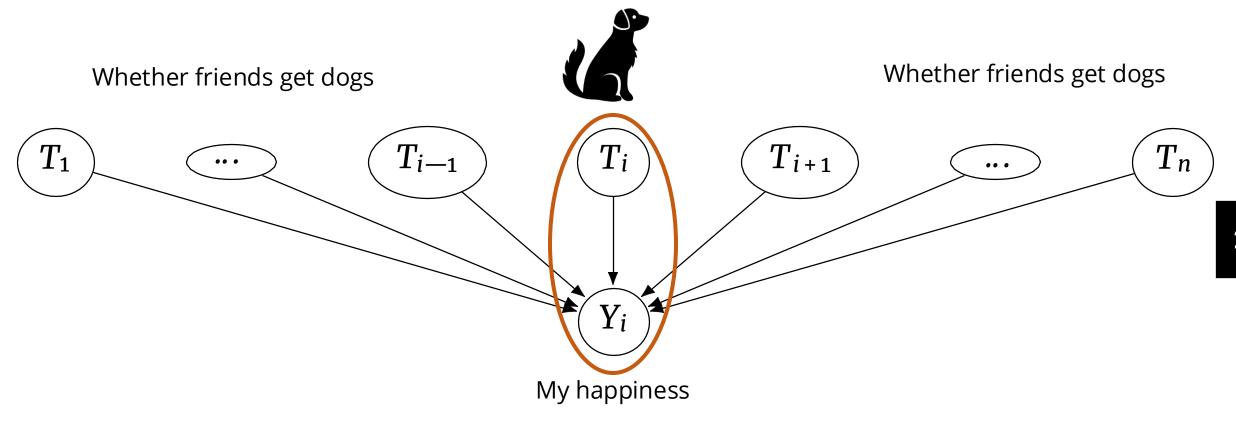
The outcome Y_i of each unit \boldsymbol{i} is unaffected by anyone else's treatment T_j $j\neq i$

$$Y_i(t_1, t_2,, t_{i-1}, t_{i+1}, ..., t_{n-1}, t_n) = Y_i(t_i)$$

NO INTERFERENCE



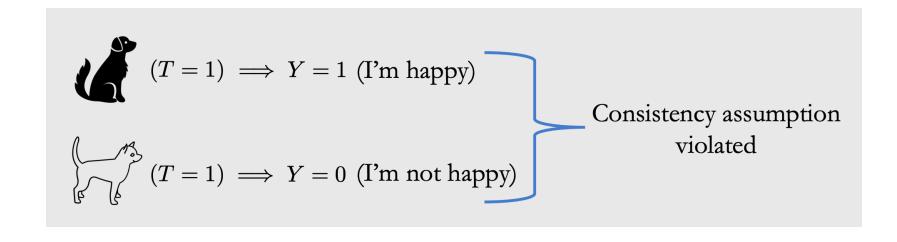
NO INTERFERENCE



CONSISTENCY

If the treatment is T, then the observed outcome Y is the potential outcome under treatment X.

Formally,
$$T = t \implies Y = Y(t)$$

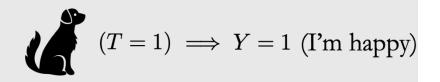


SUTVA

A combination of consistency and no interference. Specifically, the PO of a unit **do not**

depend on the treatments assigned to others.

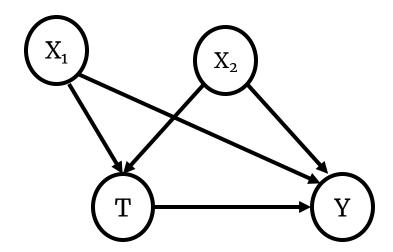
But in real world ...



HOW TO USE THE PO: AN EXAMPLE

PROPENSITY SCORE MATCHING (PSM)

It match T=0 and T=1 observations on the estimated probability of being treated.



HOW TO USE THE PO: AN EXAMPLE

PROPENSITY SCORE MATCHING (PSM)

It match T=0 and T=1 observations on the estimated probability of being treated.



PO RECAP

- Mainly used for estimating average effects of binary treatments
- Convincing empirical applications

LIMITATIONS:

- An expert of the field should verify whether all the previous assumptions are valid.

 It is challenging and you need some people working on it.
- No use of causal diagrams

CAUSAL MODEL FRAMEWORKS

Potential Outcomes (PO)

Structural Causal Model (SCM)

Antecedents in the earlier econometric literature

Demand and Supply Models (Haavelmo, 1944)

Path analysis (Wright, 1934)

Specifically, to deal with:

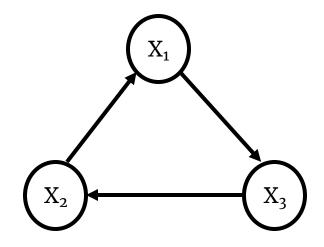
Estimating individual-level causal effects

Complex models with a large number of variables

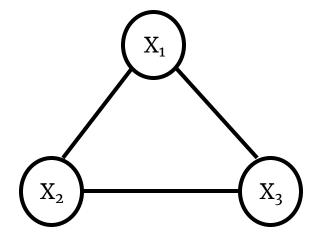
STRUCTURAL CAUSAL MODEL

Mathematically, a Structural Causal Model (SCM) consists of **a set of Endogenous (V)** and a set of **Exogenous (U)** variables connected by **a set of functions (F)** that determine the values of the the variables in V based on the values of the variables in U.

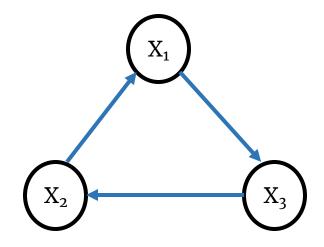
Each SCM is associated with a **graphical model** where **each node** is a **variable in V** and each edge is a **function f**.



Directed Graph

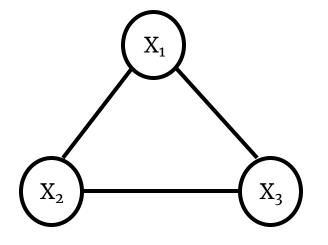


Undirected Graph

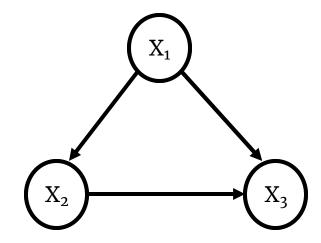


Directed Graph

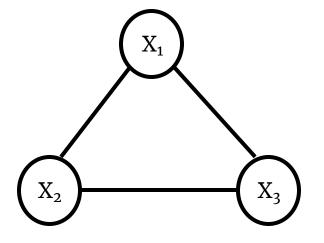
This graph contains a cycle



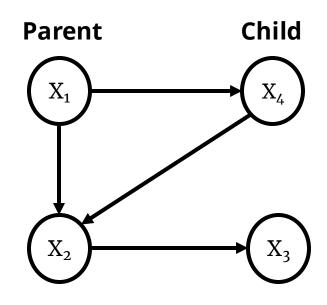
Undirected Graph

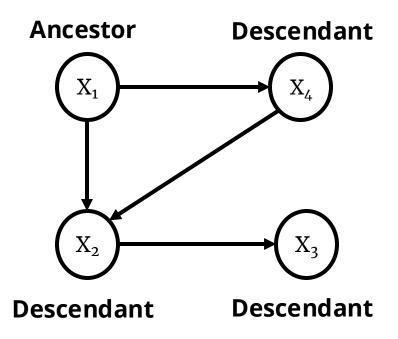


Directed Acyclic Graph

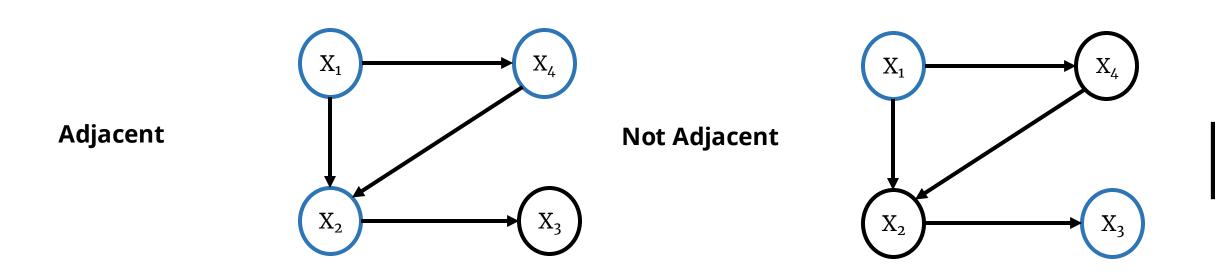


Undirected Graph

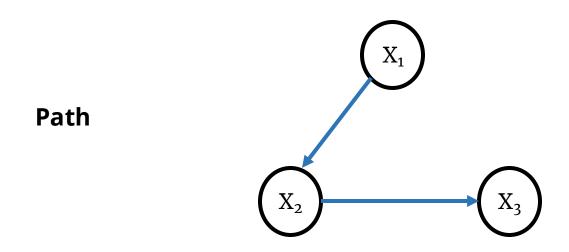




Descendant is a **broader** term than child because it includes **not only the immediate children** but also **their children and so forth**



Ajdacent is a node that is directly connected to another node within a graph



A path is a sequence of nodes where each node is connected to the next node by an edge

STRUCTURAL CAUSAL MODEL: EXAMPLE

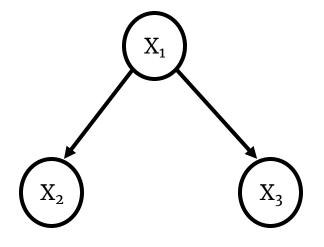
$$X = \{X_1, X_2, X_3\}$$

 $X_1 := Uniform(0, 1)$

 $X_2 := \sin(X_1) + \text{Normal}(0, 1)$

 $X_3 := 2 * X_1 + Normal(0, 1)$

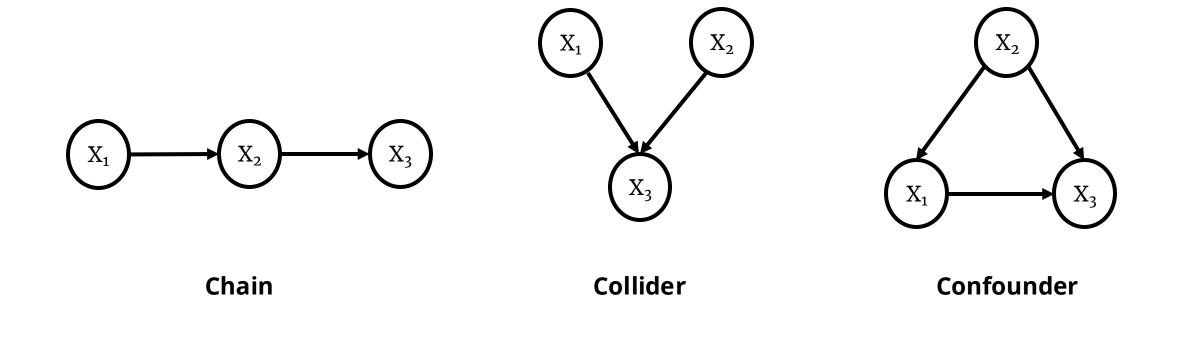
Structural Equation (SE)



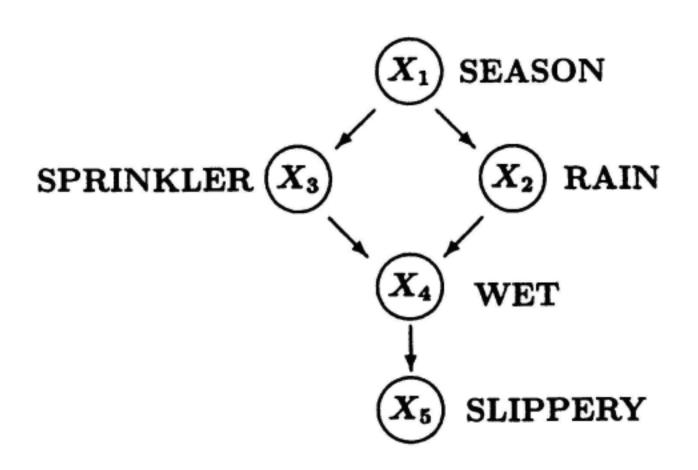
Directed Acyclic Graph (DAG)

37

CAUSAL STRUCTURES

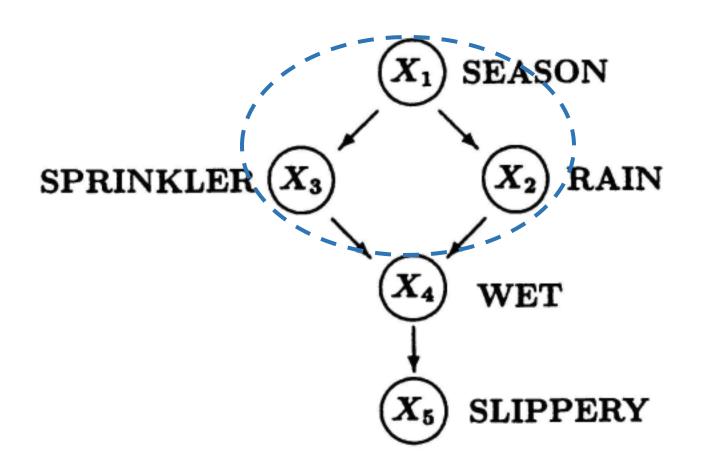


CAUSAL STRUCTURES: EXAMPLE



38

CAUSAL STRUCTURES: EXAMPLE



Confounder

38

CAUSAL STRUCTURES: EXAMPLE



Collider

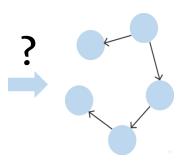
LEVELS OF INVESTIGATION

Causal Discovery (CD)

Given a set of variables, is it possible to **determine the**causal relationship

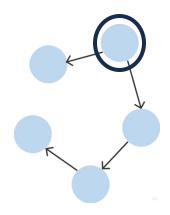
between them?

A	В	С	D	E
3.2	2.2	1.6	7.5	2.4
2.9	3.1	1.3	8.2	5.1

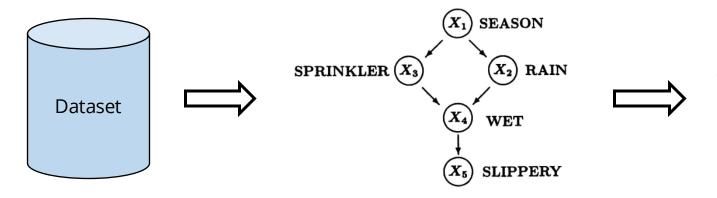


Causal Inference (CI)

If we manipulate
the value of one variable,
how much would
the others change?



CAUSAL PIPELINE



Causal Discovery

What are the consequences of turning on the sprinkler?

(The floor gets wet)

Causal Inference

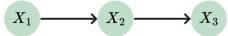
40

CAUSAL DISCOVERY: METHODS

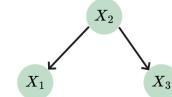
Constraintbased Scorebased

Markov Equivalence Class

$$X_1 \!\perp\!\!\!\perp X_3 \!\mid\! X_2$$
 and $X_1 \!\not\!\perp\!\!\!\perp X_3$



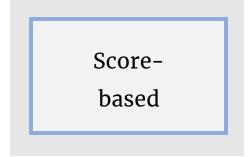
$$X_1 \longleftarrow X_2 \longleftarrow X_3$$



40

CAUSAL DISCOVERY: METHODS

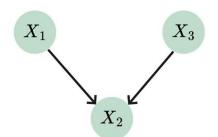
Constraintbased



Markov Equivalence Class

$$X_1 \perp \!\!\! \perp X_3 \mid X_2 \text{ and } X_1 \perp \!\!\! \perp X_3$$
 $X_1 \longrightarrow X_2 \longrightarrow X_3$
 $X_1 \longleftarrow X_2 \longleftarrow X_3$
 $X_1 \longleftarrow X_2 \longleftarrow X_3$

V-structure



CAUSAL DISCOVERY: METHODS

Constraintbased

Scorebased Markov Equivalence Class

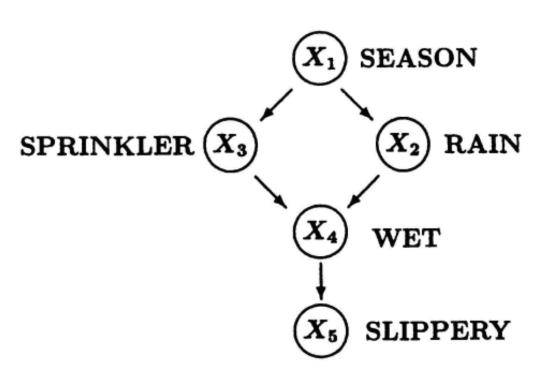
$$X_1 \perp \!\!\! \perp X_3 \mid X_2 \text{ and } X_1 \not \perp \!\!\! \perp X_3$$
 $X_1 \longrightarrow X_2 \longrightarrow X_3$

$$X_1 \longleftarrow X_2 \longleftarrow X_3$$

Functional Causal Models

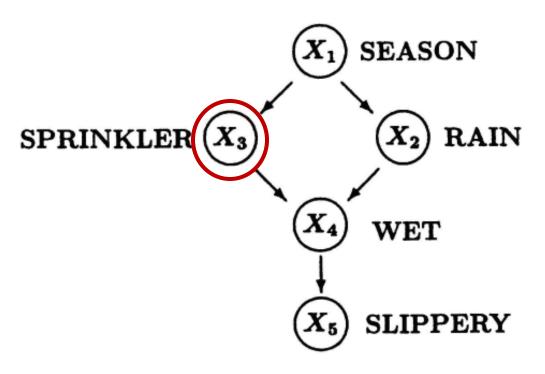
- Strong assumptions but they can uniquely identify the true DAG
- Linear and non-Gaussian, Additive noise, Post-nonlinear

INTERVENTION



Interpreting edges as cause-effect relationships enable reasoning about the outcome of interventions using the do-operator

INTERVENTION

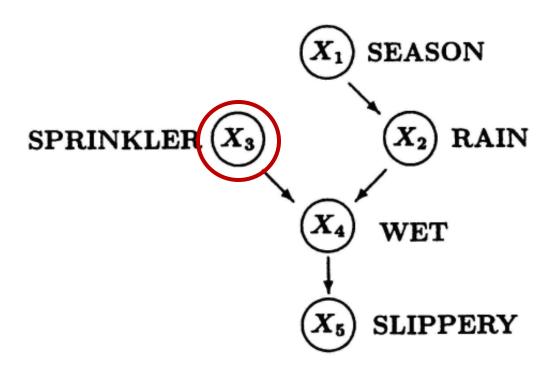


The notation do(Sprinkler := ON) denotes an intervention by which variable Sprinkler is set to value ON.

Externally forcing the variable to assume a particular value makes it **independent of its** causes and breaks their causal influence on it.

INTERVENTION

Interventional Data



Graphically, the effect of an intervention can be captured by **removing all incoming edges to the intervened variable**.

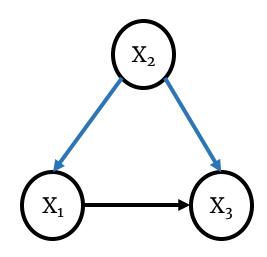
BACK-DOOR CRITERION

The best-known technique to find causal estimands given a graph.

A set of variables \mathbf{Z} satisfies the **back-door criterion** relative to an ordered pair of variables (X_i, X_j) in a DAG \mathbf{G} if:

- \bigcirc no node in **Z** is a descendant of X_i
- \bigodot **Z** blocks every path between X_i and X_j that contains an arrow into X_i .

BACK-DOOR CRITERION: EXAMPLE



Backdoor path

$$X_1 < -X_2 -> X_3$$

This path is **not causal**.

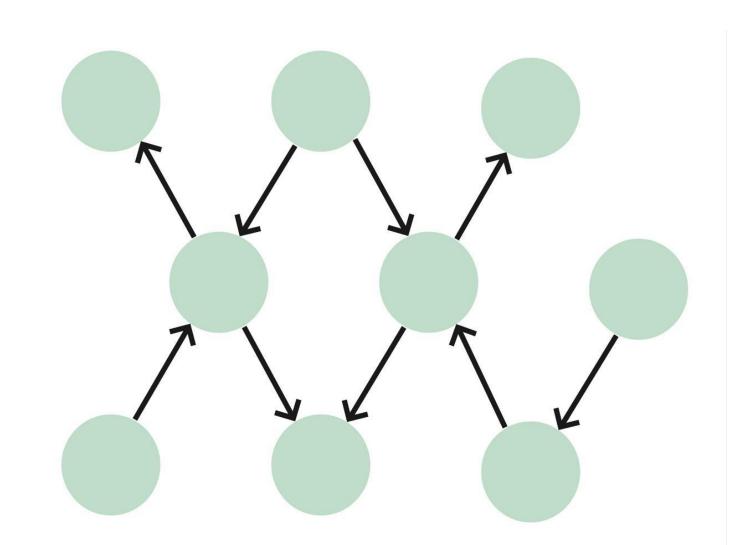
It is a process that creates **spurious correlations** between X_1 and X_3 that are driven solely by fluctuations in the X_2 random variable.

If we can **close all of the open backdoor paths**, then we can isolate the causal effect of X_1 and X_3 using an identification strategy.

$$P(X_3 \mid do(X_1) = \sum_{X_2} P(X_3 \mid X_1, X_2) P(X_2)$$

EXERCISE

Find the discovered graph



REFERENCES

Pearl, Judea, and Dana Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018.

Imbens, Guido W. "Potential outcome and directed acyclic graph approaches to causality: Relevance for empirical practice in economics." *Journal of Economic Literature* 58.4 (2020): 1129-1179.

Nogueira, Ana Rita, et al. "Methods and tools for causal discovery and causal inference." *Wiley interdisciplinary reviews: data mining and knowledge discovery* 12.2 (2022): e1449.

Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell. *Causal inference in statistics: A primer*. John Wiley & Sons, 2016.

https://www.bradyneal.com/causal-inference-course

THANK FOR YOUR ATTENTION