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REICHENBACH COMMON CAUSE PRINCIPLE
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Let X and Y be two variables such that X and Y are statistically dependent then 

it holds:   

● X is indirectly causing Y

● Y is indirectly causing X

● There is a possibly unobserved common cause Z that indirectly causes both 

X and Y



CORRELATION DOES NOT IMPLY CAUSATION
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Sleeping with shoes on is strongly correlated with waking up with a headache
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CORRELATION DOES NOT IMPLY CAUSATION

Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

1. Shoe-sleepers differ from non-shoe-sleepers in a key way

2. Confounding

confounding 
association
Causal association

Total association (e.g., correlation):

Mixture of causal and confounding association

2



INGREDIENTS OF A STATISTICAL THEORY OF CAUSALITY
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Working definition of causation

Method for creating causal models

Method for linking causal models with features of data

Method for reasoning over model and data



THE LATTER OF CAUSALITY
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RANDOMIZED EXPERIMENTS
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Interventional data
Post 1

Post 2

Post n

Post …

Limitations

Can not use historical data

It cannot be applied to certain situations (e.g., long-term effect, 

selected demographics, content virality)

Which kind of post works better? 



BEYOND RANDOMIZED EXPERIMENTS
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Post 1

Post 2

Post n

Associational data

Individual who 

decides where the 

post are sent

Post …

Historical 
Data

New Data



CAUSAL MODEL FRAMEWORKS
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Potential Outcomes (PO) Structural Causal Model (SCM)

Demand and Supply Models 

(Haavelmo, 1944)

Antecedents in the earlier 

econometric literature 

Path analysis

(Wright, 1934) 

These frameworks are complementary, with different strengths that make them appropriate to address 

different problems in specific situations. 
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Potential Outcomes (PO) Structural Causal Model (SCM)

Demand and Supply Models 

(Haavelmo, 1944)

Antecedents in the earlier 

econometric literature 

Path analysis

(Wright, 1934) 

Estimating individual-level 

causal effects

Complex models with a large 

number of variables
Specifically, to deal with:

CAUSAL MODEL FRAMEWORKS



POTENTIAL OUTCOME: INTUITION
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Inferring the effect of treatment on some outcome
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POTENTIAL OUTCOME: INTUITION

7

Inferring the effect of treatment on some outcome
Take a pill

Don’t take a pill

No Causal Effect



POTENTIAL OUTCOME: NOTATION

8

do (T = 1)

do (T = 0)

T: Observed Treatment

Y: Observed Outcome

Yi|do(T = 1)  

Yi|do(T = 0)

i:  used in subscript to  denote a 

specific individual

Yi (1): PO under treatment

Yi (0): PO under no treatment

= Yi (1)

= Yi (0)



OTHER DEFINITIONS
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= unit ( individual)

= population

Age

Gender

Weight

= covariates of the individual (Z)

INDIVIDUAL TREATMENT EFFECT (ITE)

The ITE for the ith unit is defined as follows:

Yi (1) - Yi (0)



POTENTIAL OUTCOME: NOTATION
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do (T = 1) Yi (1) = 1

Causal Effect: Yi (1) - Yi (0)

Yi (0) = 0

= 1

do (T = 0)

T: Observed Treatment

Y: Observed Outcome

i:  used in subscript to  denote a 

specific individual

Yi (1): PO under treatment

Yi (0): PO under no treatment



THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE
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We cannot observe both Yi (1) and Yi (0), 

therefore we cannot observe the 

Causal Effect: Yi (1) - Yi (0)

The PO that you do not (and cannot) observe are 

known as COUNTERFACTUALS because they are 

counter to fact (reality).

do (T = 1) Yi (1) = 1

Yi (0) = 0do (T = 0)

Due to the fundamental problem, we know that we 

can’t access to ITE 

Fundamental Problem.



THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE
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AVERAGE TREATMENT EFFECT (ATE)

E[Yi (1) - Yi (0)] = E[Y(1) - Y(0)] 

The ATE is obtained by taking an average over the ITEs:

where we recall that the average is over the individuals i if Yi (x) is deterministic. 

How would we actually compute the ATE?



THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE
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i T Y Y (1) Y (0) Y (1)— Y (0)

1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

The fundamental problem of CI 

can be seen as a MISSING DATA 

PROBLEM 

The question mark means that 

we do not observe the value
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i T Y Y (1) Y (0) Y (1)— Y (0)

1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

The fundamental problem of CI 

can be seen as a MISSING DATA 

PROBLEM 

E[Yi (1) - Yi (0)] = ?
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i T Y Y (1) Y (0) Y (1)— Y (0)

1 0 0 0 ?

2 1 1 1 ?

3 1 0 0 ?

4 0 0 0 ?

5 0 1 1 ?

6 1 1 1 ?

The fundamental problem of CI 

can be seen as a MISSING DATA 

PROBLEM 

2/3 1/3 1/3- =

E[Yi (1) - Yi (0)] = E[Y(1)] – E[Y(0)] = E[Y | T = 1] – E[Y|T = 0] 



THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE
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i T Y Y (1) Y (0) Y (1)— Y (0)

1 0 0 0 ?

2 1 1 1 ?

3 1 0 0 ?

4 0 0 0 ?

5 0 1 1 ?

6 1 1 1 ?

2/3 1/3 1/3- =

What does it mean? 

causation is not simply 

association

E[Yi (1) - Yi (0)] = E[Y(1)] – E[Y(0)] = E[Y | T = 1] – E[Y|T = 0] 

In general, they are not equal 

due to CONFOUNDING

What ASSUMPTIONS would make the 

ATE equal to the associational 

difference?



IGNORABILITY - (Y(1), Y(0)) ⊥ T
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X

T Y

Unconfoundeness

We can ignore how individual ended up in the treatment/control group, and treat their PO as 

exchangeable. However, it is unrealistic in observational data.

E[Yi (1)] – E[Yi (0)] = E[Y(1) | T = 1] – E[Y(0) |T = 0]

= E[Y | T = 1] – E[Y|T = 0] 

(Y(1), Y(0)) ⊥ T | X



IGNORABILITY - (Y(1), Y(0)) ⊥ T
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X

T Y

Unconfoundeness

We can ignore how individual ended up in the treatment/control group, and treat their PO as 

exchangeable. However, it is unrealistic in observational data.

E[Yi (1)] – E[Yi (0)] = E[Y(1) | T = 1] – E[Y(0) |T = 0]

= E[Y | T = 1] – E[Y|T = 0] 

(Y(1), Y(0)) ⊥ T | X

When conditioning on X, non-

causal association between T

and 𝑌 no longer exists. 



UNCONFOUNDENESS

16

M

T Y

While is not a problem in randomized experiments, it is an untestable assumption in 

observational data

There may be some unobserved confounders that are not part of X = {M} , 
meaning unconfoundedness is violated.

W
Ignorability

(Y(1), Y(0)) ⊥ T | X



UNCONFOUNDENESS

16

M

T Y

While is not a problem in randomized experiments, it is an untestable assumption in 

observational data

There may be some unobserved confounders that are not part of X = {M} , 
meaning unconfoundedness is violated.

W
Ignorability

(Y(1), Y(0)) ⊥ T | X



POSITIVITY
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For all values x of covariates x present in the population of interest (i.e., 𝒛 such that P(X = x > 0))

0 < P(T = 1 |X = x) < 1

Positivity is the condition that all subgroups of the data with different value x for 

covariates X have some probability of receiving any value of treatment T



POSITIVITY: INTUITION
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Total PopulationTotal Population

X = x

T = 0

T = 0T = 0
T = 0

No one treated

T = 1

T = 1T = 1
T = 1

Everyone treated



POSITIVITY: OVERLAP
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No overlap means severe positivity violation Complete overlap means no positivity violation
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NO INTERFERENCE

23

The outcome Yi of each unit i is unaffected by anyone else’s treatment Tj j ≠ i

Yi(t1, t2, …., ti-1, ti+1, …, tn-1, tn) = Yi(ti)



NO INTERFERENCE

24

TiTi—1.. .T1 T i + 1 .. . Tn

Yi

My happiness



NO INTERFERENCE

24

TiTi—1.. .T1 T i + 1 .. . Tn

Yi

My happiness

Whether friends get dogs Whether friends get dogs



CONSISTENCY
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If the treatment is T, then the observed outcome Y is the potential outcome under treatment X. 

Formally, T = t          Y = Y(t)



SUTVA

26

A combination of consistency and no interference. Specifically, the PO of a unit do not 

depend on the treatments assigned to others.

But in real world …  



HOW TO USE THE PO: AN EXAMPLE 
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PROPENSITY SCORE MATCHING (PSM)

It match T=0 and T=1 observations on the estimated probability of being treated. 

X2

T Y

X1



HOW TO USE THE PO: AN EXAMPLE 
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PROPENSITY SCORE MATCHING (PSM)

It match T=0 and T=1 observations on the estimated probability of being treated. 

X2

T Y

X1

X2

T Y

X1

PS

ML 
MODEL
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PO RECAP

An expert of the field should verify whether all the previous assumptions are valid.

It is challenging and you need some people working on it.

No use of causal diagrams 

LIMITATIONS:

Mainly used for estimating average effects of binary treatments 

Convincing empirical applications 
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Potential Outcomes (PO) Structural Causal Model (SCM)

Demand and Supply Models 

(Haavelmo, 1944)

Antecedents in the earlier 

econometric literature 

Path analysis

(Wright, 1934) 

Estimating individual-level 

causal effects

Complex models with a large 

number of variables
Specifically, to deal with:

CAUSAL MODEL FRAMEWORKS
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STRUCTURAL CAUSAL MODEL

Mathematically, a Structural Causal Model (SCM) consists of a set of Endogenous (V) and 

a set of Exogenous (U) variables connected by a set of functions (F) that determine the 

values of the the variables in V based on the values of the variables in U.

Each SCM is associated with a graphical model where each node is a variable in V and 

each edge is a function f.
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GRAPH TERMINOLOGY

X1

X2 X3

Directed Graph

X1

X2 X3

Undirected Graph 
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GRAPH TERMINOLOGY

X1

X2 X3

Directed Graph

X1

X2 X3

Undirected Graph 

This graph contains a cycle
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GRAPH TERMINOLOGY

X1

X2 X3

Directed Acyclic Graph

X1

X2 X3

X1

X2 X3

Undirected Graph 
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GRAPH TERMINOLOGY

X1

X2 X3

Parent Child

X4
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GRAPH TERMINOLOGY

X1

X2 X3

X4

Ancestor Descendant

DescendantDescendant

Descendant is a broader term than child because it includes not only the immediate children but 

also their children and so forth
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GRAPH TERMINOLOGY

X1

X2 X3

X4

Adjacent

X1

X2 X3

X4

Not Adjacent

Ajdacent is a node that is directly connected to another node within a graph
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GRAPH TERMINOLOGY

X1

X2 X3

Path

A path is a sequence of nodes where each node is connected to the next node by an edge
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STRUCTURAL CAUSAL MODEL: EXAMPLE

X1

X2 X3

Directed Acyclic Graph 

(DAG)

Structural Equation 

(SE)

X = {X1, X2, X3}

X1 := Uniform(0, 1) 

X2 := sin(X1) + Normal(0, 1)

X3 := 2 * X1 + Normal(0, 1)
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CAUSAL STRUCTURES

X1 X2 X3

Chain

X1 X2

X3

Collider

X1

X2

X3

Confounder



38

CAUSAL STRUCTURES: EXAMPLE
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CAUSAL STRUCTURES: EXAMPLE

Confounder
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CAUSAL STRUCTURES: EXAMPLE

Collider



LEVELS OF INVESTIGATION
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Causal Discovery (CD)

Given a set of variables, 

is it possible to determine the 

causal relationship 

between them?

A B C D E

3.2 2.2 1.6 7.5 2.4

2.9 3.1 1.3 8.2 5.1

… … … … …

?

Causal Inference (CI)

If we manipulate

the value of one variable, 

how much would

the others change?
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CAUSAL PIPELINE

Dataset

Causal Discovery Causal Inference 

What are the consequences of 

turning on the sprinkler?

(The floor gets wet)
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CAUSAL DISCOVERY: METHODS

Constraint-

based

Score-

based

Markov Equivalence Class
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CAUSAL DISCOVERY: METHODS

Constraint-

based

Score-

based

Markov Equivalence Class

V-structure
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CAUSAL DISCOVERY: METHODS

Constraint-

based

Score-

based

Functional Causal 

Models

Markov Equivalence Class

• Strong assumptions but they can

uniquely identify the true DAG

• Linear and non-Gaussian, Additive 

noise, Post-nonlinear 
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INTERVENTION

Interpreting edges as cause-effect relationships 

enable reasoning about the outcome of 

interventions using the do-operator
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INTERVENTION

The notation do(Sprinkler := ON) denotes an 

intervention by which variable Sprinkler is set 

to value ON.

Externally forcing the variable to assume a 

particular value makes it independent of its 

causes and breaks their causal influence 

on it.
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INTERVENTION

Graphically, the effect of an intervention can 

be captured by removing all incoming 

edges to the intervened variable.

Interventional Data
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BACK-DOOR CRITERION

A set of variables Z satisfies the back-door criterion relative to an ordered pair of variables 

(Xi, Xj) in a DAG G if:

no node in Z is a descendant of Xi

Z blocks every path between Xi and Xj that contains an arrow into Xi.

The best-known technique to find causal estimands given a graph.
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BACK-DOOR CRITERION: EXAMPLE

X1

X2

X3

Backdoor path 

X1 <- X2 -> X3

This path is not causal. 

It is a process that creates spurious correlations between 

X1 and X3 that are driven solely by fluctuations 

in the X2 random variable. 

If we can close all of the open backdoor paths, 

then we can isolate the causal effect of X1 and X3 using an 

identification strategy.

P(X3 | do(X1) =  σ X2 P(X3| X1, X2) P(X2)
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EXERCISE

Find 

the discovered 

graph
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THANK FOR YOUR ATTENTION


	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 75
	Slide 76

